Tittel:
Risiko- og sårbarhetsanalyse for kommunene Trondheim, Malvik, Klæbu, Rissa, Leksvik, Oppdal og Rennebu

Forfattere:
Risiko- og sårbarhetsanalysen er utarbeidet av en prosjektgruppe bestående av personer fra Trøndelag brann- og redningstjeneste IKS. Følgende personer har deltatt i gruppen:
- Christian W. Bjørk
- Einar Nyberg
- Hilde Sivertsen
Arbeidet har kontinuerlig vært diskutert i prosjektgruppa i forbindelsen med utarbeiding av ROS. I tillegg til selve prosjektgruppa har også andre ansatte i Trøndelag brann- og redningstjeneste IKS vært viktige bidragsytere i arbeidet.

Oppsummering:

Tilgjengelighet
Hovedrapport: □ Begrenset ☑ Intern ☑ Fri distribusjon □ Referanse tillatt
Tilleggsrapporter: ☑ Begrenset □ Intern □ Fri distribusjon □ Referanse tillatt

<table>
<thead>
<tr>
<th>Rev. nr.</th>
<th>Dato</th>
<th>Utarbeidet av</th>
<th>Kontrollert av</th>
<th>Godkjent av</th>
<th>Grunnlag for revisjon</th>
</tr>
</thead>
</table>
| 00 | 01.06.2015 | C Bjørk
E Nyberg
H Sivertsen | T Mæhllumssveen | | Første utkast av analysen |
| 01 | 01.10.2015 | Kvalitetssikring av Safetec | | Kvalitetssikring utført av Safetec | |
| 02 | 15.10.2015 | H Sivertsen | | Endringer etter Safetec sin kvalitetssikring | |
Sammendrag

Formålet med analysen er at det skal danne grunnlag for dimensjonering av brann- og redningstjenesten, kommunens planleggingsarbeid og kunne benyttes som underlag for beslutninger og prioriteringer på dette området, jf. brann- og eksplosjonsvernloven § 9 og dimensjoneringsforskriften § 2-4.

Viktig i denne sammenhengen er en analyse av risikoen for hendelser som brann og ulykker representerer. Det er derfor foretatt en ROS-analyse som gir en beskrivelse av risikoen i de ulike kommunene innenfor områdene brann og akutte ulykker. Risikoen baserer seg på hovedsakelig på kvalitativ analyse.

Avgrensing

De analyserte hendelsene er avgrenset til hendelser som primært berører brann- og redningstjenesten, jf. brann- og eksplosjonsvernloven § 11, og må ses i sammenheng med trøndelagsfylkenes, politiets og kommunenes øvrige ROS-analyser.

I analysen er det ikke vurdert sammentreff av flere hendelser/ulykker samtidig, kun enkeltstående ulykker som brann- og redningstjenesten blir kalt ut på.

I laboratorier der blant annet kjemiske/biologiske forbindelser er livsfarlige om de spres utenfor laboratoriet, er det ikke tatt hensyn til i denne analysen.

Helse-, miljø- og sikkerhetsarbeid internt i brann- og redningstjenesten og interne sårbarheter er ikke håndtert her.

Analysen følger oppsettet i Norsk Standard og tar derved kun for seg de første skrittene i en fullstendig risikovurdering. Resultatet av analysen er en beskrivelse av den kjente risikoen i regionen.
Forutsetninger
Utgangspunktet for analysen er at kravene i dimensjoneringsforskriften er oppfylt for alle kommunene i TBRT. Likevel er det variasjon mellom de ulike kommunene hvilken forutsetning de har for å ivareta ulike ulykkestilfeller. I tillegg forutsettes det at det ikke er svikt i vannledningsnettet og ikke stengte veier og så videre, det vil si at det forutsettes ”normale” forhold. Som bakgrunn for analysen forutsettes det også at det finnes en nødalarmeringssentral som mottar alarmer/meldinger om brann og ulykker og sender ut mannskap.

Konklusjoner
Ut i fra risikomatrisen kommer det fram at brannene som har aller høyest risiko er disse:

- Fredet og verneverdig bebyggelse og eldre tett trehusbebyggelse
- 1890-gårder

For boliger generelt er det høy sannsynlighet for branner med alvorlig konsekvens.

I analysen er risikoen for ulykker også beskrevet i risikomatrise, og oppsummert tilsvarende som for branner. Det bemerkes at brann- og redningstjenesten ikke har det samme primæransvaret her som innenfor brannvern. Det kan likevel nevnes at trafikkulykker generelt, utpeker seg med aller høyest risiko sammen med omkomne i elv og kanal. Det kan nevnes at slike hendelser skjer hvert år.
Innhold

1. Innledning .. 6
 1.1 Generelt .. 6
 1.2 TBRT’s visjon .. 6
 1.3 Lover- og forskrifter .. 6
 1.4 Lovgrunnlag et for ROS-arbeidet .. 7
 1.5 Hensikt med ROS-analysen .. 7
 1.6 Definisjon av viktige begreper .. 7
 1.7 Tilsyn fra DSB ... 8
 1.8 Stortingsmeldinger og Norges offentlige utredninger ... 9
 1.9 Fremgangsmåte ... 10
 1.9.1 Data .. 10
 1.9.2 Forutsetninger .. 10
 1.9.3 Omfang og avgrensninger ... 10
 1.9.4 Praktisk gjennomføring av analysearbeidet .. 11
 1.9.5 Metodebeskrivelse .. 12

2. Beskrivelse av kommunene .. 16
 2.1 Dagens brannforebyggende arbeid ... 19
 2.2 Dagens beredskapssituasjon ... 24
 2.2.1 Innsatstid ... 32
 2.2.2 Vannforsyning ... 35
 2.2.3 Høyderedskap ... 36
 2.2.4 Utvendig slokkeinnsats ... 36
 2.2.5 Sammenrasninger av bygg og anlegg .. 36
 2.2.6 Status vedrørende planverk ... 36
 2.2.7 Samarbeid med andre .. 37
 2.2.8 Status vedrørende planverk ... 37
 2.3 Nodalarmeringscentral ... 37
 2.4 Interkommunalt utvalg mot akutt forurensning (IUA) ... 37

3. Analyse av branner ... 40
 3.1 Kartlegging av tilstanden i bygninger/områder med mer .. 40
 3.1.1 Bygninger/områder ... 40
 3.1.2 Midlertidige arrangement ... 46
 3.1.3 Skogområder .. 46
 3.1.4 Tunneler ... 47
 3.1.5 Transport av farlig gods .. 48
 3.1.6 Lagring av farlig stoff .. 48
 3.1.7 Lagring av eksplosiver .. 49
 3.1.8 Spesielle samfunnsviktige funksjoner – brann og sårbarhet 49
 3.2 Analyse av risiko ... 52

4. Analyse av akutte ulykker ... 55
 4.1 Akutte ulykker – beskrivelse .. 55
 4.1.1 Ulykker med farlig gods - akutt forurensning ... 55
 4.1.2 Ulykker relatert til elv, vann og sjø .. 56
 4.1.3 Ulykker i persontransport .. 56
 4.1.4 Flom i elv og sjø, dambrudd, jord- og snøskred, vind og liknende 57
 4.1.5 Arbeidsulykker, fritidsulykker, hjemmeulykker ... 58
 4.1.6 Selvmord .. 58
4.2 Analyse – akutteulykker .. 58

5. Drøfting og evaluering av analysen .. 61

5.1 Gyldigheten til resultatene - Usikkerheter ... 61

5.1.1 Arbeidet med analysen ... 61

5.1.2 Datamateriale og usikkerhet .. 61

5.1.3 Metode .. 62

5.1.4 Nøyaktighet .. 63

5.2 Tendenser i samfunnet – Risikopåvirkende forhold .. 63

5.2.1 Tilstanden i byggebransjen .. 63

5.2.2 Endret bomønster .. 64

5.2.3 Arbeidsinnvandrere .. 65

5.2.4 Studenter og hyblifisering .. 65

5.2.5 Hytte/fritidsvirksomhet ... 66

5.2.6 Kullgrill .. 66

5.2.7 Universell utforming .. 67

5.2.8 Klimarelaterte utfordringer .. 67

6. Veien videre .. 68

6.1 Oppfølging av risiko- og sårbarhetsanalysen .. 68

Vedlegg .. 71
1. Innledning

1.1 Generelt

Kommunene skal ovenfor DSB dokumentere at forskriftens\(^1\) krav til organisering, utrustning og bemanning oppfylles alene eller i samarbeid med annen kommune. Organisering, utrustning og dimensjonering skal baseres på kartlagt risiko og sårbarhet i kommunen.

Trøndelag brann- og redningstjeneste IKS (TBRT) består i dag av kommunene Trondheim, Malvik, Klæbu, Rissa, Leksvik, Oppdal og Rennebu. Alle kommunene har brannordninger som er vedtatt i perioden 2000-2013, det vil si at brannordning i Trondheim, Malvik, Klæbu, Rissa og Leksvik er gjeldende fra 01.01.2013 og brannordning i Oppdal og Rennebu ble vedtatt henholdsvis 28.06.2000 og 14.03.2010.

1.2 TBRT`s visjon

Det er en nasjonal målsetting å redusere antallet omkomne i brann. Trøndelag brann- og redningstjeneste IKS har en visjon om at \textit{Ingen skal omkomme i brann}.\footnote{\textit{Ingen skal omkomme i brann}.}

1.3 Lover- og forskrifter

Brann- og redningstjenestens (kommunenes) oppgaver innenfor brann og akutte ulykker er regulert i brann- og eksplosjonsvernloven\(^2\). Dette gjelder også følgende forskrifter:

\begin{itemize}
 \item Dimensjoneringsforskriften, av 26. juni 2002\(^3\).
 \item Forebyggendeforskriften, av 26. juni 2002\(^4\).
 \item Forskrift om håndtering av farlig stoff, av 8. juni 2009\(^5\).
 \item Forskrift om håndtering av eksplosjonsfarlig stoff, av 26. juni 2002
\end{itemize}

Det åpnes også for lokale forskrifter.

I tillegg til overnevnte lov- og forskriftsverk angir internkontrollforskriften\(^6\) bestemmelser om at den som er ansvarlig for en virksomhet plikter å sørge for systematisk oppfølging av gjeldende krav fastsatt i blant annet brann- og eksplosjonslovgivningen.

\footnote{\textit{Ingen skal omkomme i brann}.}
1.4 Lovgrunnlag et for ROS-arbeidet

Grunnlaget for ROS-arbeidet er hjemlet på flere steder i brann- og eksplosjonsvernloven. Dette gjelder hovedsakelig i disse paragrafene:

- § 9. Etablering og drift av brannvesen, andre ledd
- § 10. Dokumentasjon, første og andre ledd
- § 11. Brannvesenets oppgaver

I dimensjoneringsforskriften er dette hjemlet i § 2-4 Dokumentasjon, andre og fjerde ledd.

1.5 Hensikt med ROS-analysen

Formålet med analysen er at det skal danne grunnlag for dimensjonering av brann- og redningstjenesten, kommunens planleggingsarbeid og kunne benyttes som underlag for beslutninger og prioriteringer på dette området, jf. brann- og eksplosjonsvernloven § 9 og dimensjoneringsforskriften § 2-4.

1.6 Definisjon av viktige begreper

I det følgende blir viktige begreper som omtales i denne rapporten omtalt. For flere begreper, se vedlegg 1.

Med **uønskede hendelser** forstår vi hendelser som kan representere en fare for:

- Mennesker, dyr, miljø, økonomiske verdier
- Samfunnsviktige funksjoner
- Viktige kulturhistoriske bygninger og anlegg

Sannsynlighet er et uttrykk for i hvilken grad det er trolig at en hendelse vil kunne inntreffe.

Konsekvens er et uttrykk for mulig følge av en uønsket hendelse.
Risiko uttrykker den fare som uønskede hendelser representerer for mennesker, miljø, økonomiske verdier og samfunnsviktige funksjoner. Risiko er et resultat av sannsynligheten (frekvensen) for og konsekvensene av uønskede hendelser.

Sammenholdes sannsynlighet og konsekvens, vil man kunne få et bilde av risikoen forbundet med den aktuelle hendelsen. På bakgrunn av den kartlagte risikoen må det gjøres en helhetsvurdering og avveining av:

- Hvilke økonomiske og praktiske muligheter det er for forebyggende tiltak i risikoobjektene
- Hvilken organisering og dimensjonering brannvesenet skal ha utover minstekravene
- Hvilke risikoer kommunen må leve med

Risikoanalyse er en systematisk fremgangsmåte for å beskrive og/eller beregne risiko.

Sårbarhet er et uttrykk for et systems evne til å fungere og oppnå sine mål når det utsettes for en uønsket hendelse, samt de problemer systemet får med å gjenta sin virksomhet etter at hendelsen er inntruffet.

Ulykke er en plutselig og tilfeldig hendelse som forårsaker større skade. Begrepet kan dekke et vidt spekter av hendelser. I vår beskrivelse har vi tatt med de hendelsene (akutte ulykker) der det kan tenkes at brann- og redningstjenesten vil kunne spille en rolle.

Redningsbegrepet er knyttet til redning av mennesker fra død eller skade. Redningstjenesten i Norge utøves som et samvirke mellom offentlige etater, frivillige organisasjoner og private selskaper med egne ressurser til redningsinnsats. Tjenesten er integrert og omfatter alle typer redningsaksjoner (sjø-, land- og flyredning).

1.7 Tilsyn fra DSB
DSB førte i 2013 tilsyn med Trøndelag brann- og redningstjeneste IKS sitt forebyggende arbeid, og de konkluderte med at det ikke foreligger noen avvik i det forebyggende arbeidet.

Oppdal kommune hadde tilsyn fra DSB i 2010, før kommunens brannvesen ble en del av brann- og redningstjenesten. Det ble påpekt at avvik vil bli lukket når ny ROS/brannordning
blir oppdatert og godkjent. Her er det uklarheter rundt høyderedskap. I forslaget til framtidig dimensjonering og organisering\(^7\) er det foreslått høyderedskap.

1.8 Stortingsmeldinger og Norges offentlige utredninger

Det er utarbeidet flere stortingsmeldinger og offentlige utredninger som omhandler brann- og sikkerhetsarbeidet. Det kan nevnes:

- St. melding nr. 15 (1991-92) \textit{Brann- og eksplosjonsvern}, med dreining av strategi over på forebyggende arbeid.
- St. melding nr. 39 (2003-2004) \textit{Samfunnssikkerhet og sivilt-militært samarbeid}
- St. melding nr. 22 (2007-2008) \textit{Samfunnssikkerhet, samvirke og samarbeid}, med fokus på effektiv bruk av samfunnets ressurser og samordning.
- St. melding nr. 35 (2008-2009) \textit{Brannsikkerhet. Forebygging og brannvesenet\textquotesingle\textsc{\textordmasse} redningsoppgaver}. Meldingen omtaler blant annet mål for brannvernarbeidet i årene fremover. Videre gis det en omtale av tiltak som er iverksatt med sikte på å nå disse målene, samt tiltak som vurderes iverksatt. Regjeringen fastsetter i stortingsmeldingen følgende nasjonale mål for brannvernarbeidet i årene fremover:
 - Færre omkomne i brann
 - Unngå tap av uerstattelige kulturhistoriske verdier
 - Unngå branner som lammer kritiske samfunnssfunksjoner
 - Styrket beredskap og håndteringsevne
 - Mindre tap av materielle verdier
- St. melding nr. 29 (2011-2012) \textit{Samfunnssikkerhet}
- NOU 2012:4 \textit{Trygg hjemme, Brannsikkerhet for utsatte grupper}
- NOU 2012:8 \textit{Ny utdanning for nye utfordringer}
- Brannstudien, Rapport fra arbeidsgruppe som har vurdert brann og redningsvesenets organisering og ressursbruk, desember 2013
- Nasjonalt risikobilde 2014, utgitt av DSB

\(^7\) Brannordning, Dokumentasjon av brannvesenets dimensjonering, organisering og utrustning for regionen Trondheim, Malvik, Klaebu, Rissa, Leksvik, Melhus, Midtre Gauldal, Rennebu og Oppdal kommuner, utkast pr 15.04.2013
1.9 Fremgangsmåte

1.9.1 Data
De datakilder som er brukt i arbeidet med analysen, er først og fremst statistisk materiale hentet fra DSB, blant annet brannfrekvens. Denne statistikken er noe mangelfull og det har derfor også vært nødvendig å benytte erfaring og faglige vurderinger for risiko (sannsynlighet og konsekvens) for de ulike hendelsene i brannvernregionen. Det er videre også innhentet statistikk fra SSB.

I hovedrapporten og vedlegg er det vist til statistikk fra de kommunene som inngår i brann- og redningstjenesten. Det er innhentet informasjon fra ROS-analysen for trøndelagsfylkene.

1.9.2 Forutsetninger
Utgangspunktet for analysen er at kravene i dimensjoneringsforskriften er oppfylt for alle kommunene i TBRT. Likevel er det variasjon mellom de ulike kommunene hvilken forutsetning de har for ulike ulykkestilfeller. I tillegg forutsettes det at det ikke er blant annet svikt i vannledningsnettet og ikke stengte veier, det vil si at det forutsettes ”normale” forhold.

Som bakgrunn for analysen forutsettes det også at det finnes en nødalarmeringssentral som mottar alarmer/meldinger om brann og ulykker og sender ut mannskap.

1.9.3 Omfang og avgrensninger

I rapporten er det i hovedsak foretatt en vurdering av risiko- og sårbarhet i kommunene med hensyn på brann og eksplosjon i bygninger, opplag, områder og tunneler. Ut fra endringer i brann- og eksplosjonsvernloven i 2002, er det i tillegg foretatt tilsvarende vurderinger av ulykker, herunder ulykker med farlig gods, ulykker relatert til elv, vann og sjo, ulykker i persontrafikk, arbeidsulykker, fritidsulykker og liknende, samt naturulykker på grunn av flom, jord- og snøskred og liknende. For en del ulykker vil brann- og redningstjenesten kun ha en sekundær rolle.

Det gjøres også oppmerksom på at det kan være hendelser hvor det er sannsynlig at brann- og redningstjenesten vil kunne spille en rolle, som ikke inngår i analysen. Et eksempel kan være militære anlegg/områder, terroraksjoner eller ulykker utenfor regionen. Vurdering og identifisering av slike hendelser anses ikke å være en oppgave for brann- og redningstjenesten, men vil inngå i politiets, fylkeskommunens og statens vurderinger av risiko og sårbarhet. Vurderinger knyttet til risiko ved hendelser med pågående livstruende vold

8 ROS-analyse for trøndelagsfylkene ROS Trøndelag
(PLIVO) er heller ikke en del av omfanget av analysen, men dette blir ivaretatt gjennom et samarbeid som brann- og redningstjenesten er en del av.

I analysen er det ikke vurdert sammentreft av flere hendelser/ulykker samtidig, kun enkeltstående ulykker som brann- og redningstjenesten blir utkalt til.

Laboratorier der blant annet kjemiske/biologiske forbindelser er livsfarlige om de spres utenfor laboratoriet, er ikke tatt hensyn til i denne analysen.

Helse-, miljø- og sikkerhet internt i brann- og redningstjenesten er ikke vurdert her. Interne risikoer og sårbarheter som kan hindre eller gjøre det vanskelig for brann- og redningstjenesten å utføre sitt oppdrag, er ikke en del av analysen. Det forventes at dette håndteres av andre prosesser i TBRT.

1.9.4 Praktisk gjennomføring av analysearbeidet

Deltager

Analysearbeidet har foregått på følgende måte:

- Kartlegging av branner i bygg/områder, midlertidige arrangement og tuneller
- Kartlegging av branner ved lagring av farlig stoff og eksplosiv vare, og transport av farlig gods
- Kartlegging/vurdering av sårbarhet
- Kartlegging av akutte ulykker
- Vurdering av konsekvenser
- Vurdering av sannsynligheter
- Analyse av risiko (brann, eksplosjon og akutte ulykker)
- Drøfting og evaluering av analysen
Nedenfor vises framgangsmåten skjematisk:

![Diagram av framgangsmåten for Risiko- og sårbarhetsanalyse](image)

Figur 1: Skjematisk fremstilling av fremgangsmåten i ROS-arbeidet.

Håndbok i kartlegging av brannrisiko i kommunene er delvis brukt i arbeidet\(^9\). Oppsettet i rapporten følger i hovedsak Norsk Standard\(^10\). I forbindelse med tidligere ROS-analyse ble det utarbeidet scenariobeskrivelser. Resultatene fra disse er også benyttet i analysearbeidet.

I kapittel 6 er veien videre foreslått. Hovedrapporten har vedlegg.

To-delt rapport

Hovedrapporten bygger blant annet på beskrivelser gitt i tilleggsrapporter for hver av kommunene. Beskrivelserne viser status vedrørende risiko for brann og eksplosjon, samt for akutt ulykker ut fra den kjennskap brann- og redningstjenesten har per dags dato. Tilleggsrapportene omfatter en betydelig mengde innsamlet informasjon, som er unntatt fra offentligheten utgjør derfor en viss usikkerhet.

1.9.5 Metodebeskrivelse

Det er vurdert hendelser som antas å skje sjeldnere enn 50 år, lite sannsynlig, og hendelser som kan skje innenfor en 50 års periode, sannsynlig. Risikomatrisene er fremsilt med

\(^9\) Håndbok i kartlegging av brannrisiko i kommunene, DSB 1995

\(^10\) NS 5814 Krav til risikoanalyser
sannsynlighet langs den horisontale aksen og konsekvens langs den vertikale, og de forskjellige graderingene innehar ulik størrelse på intervall.

Identifisjon av potensielle uønskede hendelser

I følge NS 5814¹¹ skal en risikoanalyse uttrykke hvilke hendelser som gir størst risikobidrag og de viktigste forhold som påvirker disse hendelsene. Denne identifisjonsmetoden er mye brukt i ROS-analyser, da den er ansett til å være en hensiktsmessig måte å beskrive risiko på. Med bakgrunn i sammendraget av kartleggingen i kapitlene 3.1 og 4.1 er potensielle uønskede hendelser i det følgende vurdert både med hensyn på konsekvens og sannsynlighet. Det er sett på tenkelige tilfeller som kan inntreffe; lite sannsynlige hendelser og hendelser som sannsynlig kan inntreffe. Resultatet gir et bilde av risikoen i regionen.

Vurdering av konsekvens av de uønskede hendelsene

Ved vurdering av konsekvens bruokes følgende gradering:

<table>
<thead>
<tr>
<th></th>
<th>Liv og helse</th>
<th>Materielle verdier</th>
<th>Miljø</th>
</tr>
</thead>
<tbody>
<tr>
<td>Katastrofal</td>
<td>>4 menneskeliv</td>
<td>Store materielle ødeleggelser</td>
<td>Regionale konsekvenser</td>
</tr>
<tr>
<td></td>
<td>> 250 dyr</td>
<td>>100 mill. kr</td>
<td>Totalskade i fredet bygning</td>
</tr>
<tr>
<td>Meget kritisk</td>
<td>2-4 menneskeliv</td>
<td>Alvorlige materielle skader</td>
<td>Store konsekvenser med behov for tiltak</td>
</tr>
<tr>
<td></td>
<td>>100 dyr</td>
<td>>10 mill. kr</td>
<td>Skade i fredet bygning</td>
</tr>
<tr>
<td>Kritisk</td>
<td>1 menneskeliv</td>
<td>Betydelig skade på materiell</td>
<td>Betydelige konsekvenser</td>
</tr>
<tr>
<td></td>
<td>>50 dyr</td>
<td>>1 mill. kr</td>
<td>Branntilløp i fredet bygning</td>
</tr>
<tr>
<td>Farlig</td>
<td>Personskade</td>
<td>Mindre skader på materiell</td>
<td>Registrerbar skade</td>
</tr>
</tbody>
</table>

Tabell 1: Gradering av konsekvens

¹¹ Norsk Standard for risikovurderinger - NS 5814
Graderingen/inndelingen er valgt ut i fra litteratur om ROS-analyser. Det er viktig å merke seg at hver gradering av konsekvens ikke har like stort intervall. Det betyr at intervallene mellom laveste og høyeste grense i hver gradering er ulik.

Ved vurdering av konsekvens blir den verste konsekvens som antas kan inntreffe, av "liv og helse" (Liv og helse), "materielle verdier" (Materielle verdier) og "miljø" (Miljø) lagt til grunn for det videre arbeidet.

Vurdering av sannsynlighet for de ønskede hendelsene

Undersøkelse fra SINTEF\(^\text{12}\) angir at sannsynligheten for at en brann skal bli stor (verdiskade > kr.500.000,-) varierer. I særskilte brannobjekter, type a, vil ca. 10 % av brannene bli store, øvrige særskilte objekter (type b og c) 1-20 % og andre objekter 20-30 %.

I vurderingen av hvor sannsynlig det er at de ønskede hendelsene inntreffer er statistikk fra Direktoratet for samfunnssikkerhet og beredskap, samt lokalkunnskap, tendenser og erfaringer fra tidligere branner blitt brukt.

<table>
<thead>
<tr>
<th>SANNSYNLIGHET</th>
<th>FREKVENS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Svært lite sannsynlig og lite sannsynlig</td>
<td>Sjeldnere enn 50 år</td>
</tr>
<tr>
<td>Sannsynlig</td>
<td>Mellom en gang/10 år og en gang/ 50 år</td>
</tr>
<tr>
<td>Meget sannsynlig</td>
<td>Mellom en gang/år og en gang/ 10 år</td>
</tr>
<tr>
<td>Svært sannsynlig</td>
<td>Mer enn en gang/år</td>
</tr>
</tbody>
</table>

Tabell 2: Sannsynlighet/gradering basert på hvor ofte en uønsket hendelse inntreffer

Hendelser av ulik frekvens og ulik størrelse

Det bemerkes at ROS-analysen har et slikt perspektiv at den hovedsakelig fokuserer på hendelser som vurderes å kunne føre til betydelige konsekvenser. Da hendelser med mindre konsekvens også kan anses som uakseptable av samfunnet, kan det være behov for å utvide analysen senere til i større grad å omfatte mer svært sannsynlige/dagligdagse hendelser.

Statistikk for svært sannsynlige/dagligdagse hendelser er omtalt under kapittel 2.2, om dagens beredskapssituasjon, og i slike hendelser inngår alle typer hendelser som brann- og redningstjenesten har blitt utalarmert til. Det differensieres ikke på hendelsens størrelse og...

\(^{12}\) SINTEF, rapport A04122 fra 2005
omfang. Hendelser brann- og redningstjenesten har statistikk på, baseres kun på type og antall utrykninger hvert år, og gir en pekepinn på antatt størrelse i tall. Det kan være nødvendig å studere hendelsene for å få en mer detaljert oversikt over disse.

Aksept av risiko for uønskede hendelser
Det vil ikke være samfunnsøkonomisk forsvarlig å prøve å eliminere all sannsynlighet for uønskede hendelser i et samfunn. Det betyr at kostnadene ved dette arbeidet er for omfattende i forhold til sannsynligheten for at det skal inntreffe og at samfunnet må leve med disse risikoene. For å ”imøtekomme” slike risikoer, er det viktig med realistiske øvelser.

Håndtering av risiko er et tema i det videre arbeidet med brannordning og strategidokumenter for brann- og redningstjenesten. Disse dokumentene blir utarbeidet for å møte og eliminere risikoer best mulig.
2. Beskrivelse av kommunene

De forskjellige kommunene er ulike med hensyn på folkemengde, folketetthet, areal og topografi, og gir innenfor flere områder ulike utfordringer. Trondheim kommune er en typisk bykommune i norsk målestokk, mens de andre kommunene har mindre tettsteder og mer landbruk og hyttevirksomhet sett i forhold til innbyggertallet. Enkelte kommuner ligger ved fjorden, mens andre igjen er innlandskommuner.

Brannvernregionen hadde til sammen 220 948 innbyggere pr. 01.01.2014, jf. tabell nedenfor. Tabellen gjengir også innbyggertallet i 2012 og 2013. Fordelingen av innbyggerne er som følger:

<table>
<thead>
<tr>
<th>Kommune</th>
<th>Folkemengde pr. 01.01.2012</th>
<th>Folkemengde pr. 01.01.2013</th>
<th>Folkemengde pr. 01.01.2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trondheim</td>
<td>176 348</td>
<td>179 692</td>
<td>182 035</td>
</tr>
<tr>
<td>Malvik</td>
<td>12 785</td>
<td>13 085</td>
<td>13 371</td>
</tr>
<tr>
<td>Klæbu</td>
<td>5 930</td>
<td>5 939</td>
<td>5 970</td>
</tr>
<tr>
<td>Rissa</td>
<td>6 543</td>
<td>6 652</td>
<td>6 646</td>
</tr>
<tr>
<td>Leksvik</td>
<td>3 527</td>
<td>3 531</td>
<td>3 555</td>
</tr>
<tr>
<td>Oppdal</td>
<td>6 755</td>
<td>6 794</td>
<td>6 814</td>
</tr>
<tr>
<td>Rennebu</td>
<td>2 569</td>
<td>2 534</td>
<td>2 556</td>
</tr>
<tr>
<td>Regionen</td>
<td>214 457</td>
<td>218 227</td>
<td>220 948</td>
</tr>
</tbody>
</table>

Tabell 3: Folkemengde pr. 01.01.2012, 01.01.2013 og 01.01.2014

Antall innbyggere i regionen er økende. Det var en økning på 6 491 innbyggere fra 01.01.2012 til 01.01.2014, det vil si i gjennomsnitt i overkant av 3 200 innbyggere per år. Økningen var størst i Trondheim. Dette tallet er uten de uregistrerte studentene som hovedsakelig bor i Trondheim kommune. Det antas at det faktisk bor omtrent 20 000 studenter i Trondheim som ikke er registrert bosatt i kommunen, og som således ikke inngår i overnevnte antall innbyggere.

Tettsteder med antall innbyggere i brann- og redningstjenesten pr. 01.01.2014:
Risiko- og sårbarhetsanalyse
Trondheim, Malvik, Klæbu, Rennebu,Oppdal, Rissa og Leksvik
Trøndelag brann- og redningstjeneste IKS

<table>
<thead>
<tr>
<th>Kommune</th>
<th>Tettsted</th>
<th>Antall innbyggere</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trondheim</td>
<td>Trondheim</td>
<td>172 226</td>
</tr>
<tr>
<td></td>
<td>Trolla</td>
<td>527</td>
</tr>
<tr>
<td></td>
<td>Spongdal</td>
<td>448</td>
</tr>
<tr>
<td></td>
<td>Ringvål</td>
<td>465</td>
</tr>
<tr>
<td></td>
<td>Langørjan</td>
<td>411</td>
</tr>
<tr>
<td></td>
<td>Bratsberg</td>
<td>409</td>
</tr>
<tr>
<td></td>
<td>Nypan</td>
<td>867</td>
</tr>
<tr>
<td>Totalt i Trondheim</td>
<td></td>
<td>175 353</td>
</tr>
<tr>
<td>Malvik</td>
<td>"Malvik i alt" (Malvik, Hundhammer, Vikhammer og Være)</td>
<td>6 168 i Malvik kommune 553 i Trondheim kommune</td>
</tr>
<tr>
<td></td>
<td>Hommelvik</td>
<td>4 867</td>
</tr>
<tr>
<td></td>
<td>Muruvik</td>
<td>501</td>
</tr>
<tr>
<td>Totalt i Malvik</td>
<td></td>
<td>12 089</td>
</tr>
<tr>
<td>Klæbu</td>
<td>Klæbu (tettsted)</td>
<td>3 225</td>
</tr>
<tr>
<td></td>
<td>Tanem</td>
<td>1 251</td>
</tr>
<tr>
<td>Totalt i Klæbu</td>
<td></td>
<td>4 476</td>
</tr>
<tr>
<td>Rissa</td>
<td>Råkvåg (Stjørna)</td>
<td>234</td>
</tr>
<tr>
<td></td>
<td>Årnset (Rissa sentrum)</td>
<td>1 013</td>
</tr>
<tr>
<td></td>
<td>Askjem (Stadsbygd)</td>
<td>296</td>
</tr>
<tr>
<td>Totalt i Rissa</td>
<td></td>
<td>1 543</td>
</tr>
<tr>
<td>Leksvik</td>
<td>Leksvik</td>
<td>1 190</td>
</tr>
<tr>
<td></td>
<td>Vanvikan</td>
<td>727</td>
</tr>
<tr>
<td>Totalt i Leksvik</td>
<td></td>
<td>1 917</td>
</tr>
<tr>
<td>Oppdal</td>
<td>Oppdal (tettsted)</td>
<td>4 118</td>
</tr>
<tr>
<td>Totalt i Oppdal</td>
<td></td>
<td>4 118</td>
</tr>
<tr>
<td>Rennebu</td>
<td>Berkåk</td>
<td>921</td>
</tr>
<tr>
<td>Totalt i Rennebu</td>
<td></td>
<td>921</td>
</tr>
</tbody>
</table>

Tabell 4: Tettsteder med antall innbyggere i brann- og redningstjenesten pr. 01.01.2014

Etter forrige ROS er Nypan i Trondheim blitt et tettsted, det vil si et område med minst 200 innbyggere der avstanden mellom husene normalt ikke overstiger 50 meter. De resterende innbyggerne som ikke bor i tettbygd strøk, bor spredt i kommunene. SSB-statistikken viser at det er en stor grad av pendling i regionen. Tabell nedenfor viser hvor mange personer som bor i spredt bebyggelse i de enkelte kommunene pr. 01.01. 2014:
Tabell 5: Antall innbyggere i spredt bebyggelse pr. 01.01.2014

<table>
<thead>
<tr>
<th>Kommune</th>
<th>Antall innbyggere</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trondheim</td>
<td>6682</td>
</tr>
<tr>
<td>Malvik</td>
<td>1282</td>
</tr>
<tr>
<td>Klæbu</td>
<td>1494</td>
</tr>
<tr>
<td>Rissa</td>
<td>5103</td>
</tr>
<tr>
<td>Leksvik</td>
<td>1638</td>
</tr>
<tr>
<td>Oppdal</td>
<td>2696</td>
</tr>
<tr>
<td>Rennebu</td>
<td>1635</td>
</tr>
</tbody>
</table>

Tabellen viser at for flere kommuner så bor mange av innbyggerne i spredt bebyggelse, ikke i tettbygd strøk. I forhold til innbygetallet er det minst spredt bebyggelse i Trondheim.

I vedleggsdelen gjengis tabeller for befolkningsfremskrivninger for alle kommunene i regionen.

I Trondheim er det høy andelen eldre tett trehusbebyggelse, brygger, murhus med trebjelkelag og en betydelig mengde fredede bygninger. Det er kommunen en stor politisk vilje til å bevare den eldre bebyggelsen i byen.

I flere av kommunene er det stor hyttevirksomhet og turisme (overnatting) som en følgeeffekt av alpinanlegg og store turområder. Dette gir store utfordringer, i tillegg til at det i de fleste tilfeller også er lang innsatstid, ulent terreng og samtidig deltidsbrannvesen. Mye av dette er også i områder der det jevnlig går ras som medfører redningsaksjoner.

De fleste kommunene har mye gjennomgangstrafikk (E6, riksveier og fylkesveger), samt tungtrafikk. Det er etablert midtdeler enkelte steder. Det er transport av farlig gods på vei og jernbane gjennom kommunene. Graden av trafikk og hastighet på vei er avgjørende for sannsynligheten for større ulykker. I flere kommuner viser statistikken at trafikken er svært ulykkesbelastet. I regionen er det i dag flere veitunneler, nye og eldre, med lengde over 500 meter. Jernbanen går gjennom flere kommuner, med både korte og lange jernbanetunneler.

Det finnes mange store gårdsbruk i brann- og redningstjenesten sitt nedslagsområde.

Det foregår en rekke arrangementer i området og antallet er økende.

Kommunene tilhører et stort politidistrikt, hvor det i lange perioder i døgnet kan være lang innsatstid både for politi og ambulanse. Det kan også være perioder med dårlig flyvær, eksempelvis før luftambulanse. Ved branner og ulykker i kommunene langt fra Trondheim, er brann- og redningstjenestens beredskapsstyrke derfor ofte de første som ankommer stedet, lenge før politi og ambulansepersonell. Dette medfører andre behov for kompetanse og utstyr enn bykommuner.
Generelt er trenden i dag en fortetting av allerede utbygde områder, blant annet på grunn av muligheten for en bedre infrastruktur med miljømessige gevinster og det at folk ønsker å bo sentralt. I flere av kommunene pågår det store utbyggingsprosjekter og det planlegges nye utbyglinger.

Antall omkomne i brann i kommunene i tidsrommet 2009-2014 er tolv personer.

<table>
<thead>
<tr>
<th>Kommune</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trondheim</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Oppdal</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rennebu</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Tabell 6: Antall omkomne i brannvernregionen i perioden 2009-2014

Flere av de omkomne er innenfor risikoutsatte grupper. Det som går igjen er at alle har omkommet i bolig/fritidsbolig. I de andre kommunene i regionen er det ikke registrert omkomne i denne perioden.

2.1 Dagens brannforebyggende arbeid

Sortingsmeldinger fastslår at det forebyggende arbeidet er sett på som den viktigste oppgaven i arbeidet med å minimere sannsynligheten og konsekvensen for branner og ulykker.

Hovedoppgavene innenfor dagens brannforebyggende arbeid er å utføre tilsyn i særskilte brannobjekt, samt å utføre feiing og tilsyn med piper og ildsteder. I tillegg er annen lovpliktig saksbehandling og informasjons- og motivasjonstiltak en viktig del av det forebyggende arbeidet.

Antallet årsverk som kommunene er pliktige til å sette av til forebyggende arbeid er regulert i dimensjoneringsforskriften. Det er flere ulike kriterier som må vurderes, blant annet:

- befolkningsmengde
- antallet store risikoobjekter (i kommunen/regionen)
- objektnes kompleksitet
- objekteiernes vilje til å investere i sikkerhet
- branntechnisk tilstand da objektet var nytt
- kompetanse hos personell i brannvesenets forebyggende avdeling
- status på det tidligere brannforebyggende arbeidet i kommunen
- kommunens ønsker om informasjons- og motivasjonstiltak
- hvorvidt forebyggende avdeling pålegges andre ikke-lovpålagte oppgaver, herunder tilsyn med andre brannobjekter

Særskilte brannobjekt

Særskilte brannobjekt omfatter blant annet sykehus, skoler, forsamlingslokaler, industri og andre bygninger hvor brann kan medføre tap av mange liv eller gi store skader på helse, miljø

Kommunene er pålagt å sørge for at det føres tilsyn med brannsikkerheten i de særskilte brannobjektene. TBRT har de siste årene ivaretatt denne oppgaven ved at det er ført tilsyn i tilnærmert alle særskilte brannobjektene som etter lovens krav skal ha tilsyn. Det er imidlertid fortsatt et stort ellerslep i forebyggende brannsikringsarbeid, både brannteknisk og organisatorisk, som henger igjen fra perioden før kommunene etablerte et felles selskap og dette vil derfor fortsatt ha ringvirkninger et god stund framover.

Det kan nevnes at både bryggene i Trondheim og bryggene i Råkvåg er av eldre dato og registrert som særskilte brannsjekt. Sistnevnte er nettopp registrert. Fredede bygg er også særskilte brannobjekt.

Eldre tett trehusbyggle, eldre leilighetshager og bekymringsmeldinger

Erfaringer og gjennomgang som er foretatt i forbindelse med tidligere ROS-analyser, viser at brannsikkerheten i bygningene for øvrig, ikke alltid er i tråd med forskriftens krav. De fastslår at den eldre tette trehusbyggunen og murhus med trebjelkelag i Trondheim er risikområder, der det er sannsynlig at konsekvensene ved brann kan bli store. Det er derfor satt i gang et omfattende forebyggende arbeid som gjøres i forbindelse med den eldre tette trehusbyggenen, eldre leilighetshager i mur med trebjelkelag (såkalte 1890-gårder) og bekymringsmeldinger i alle typer bygninger. Det er i disse bygningstypene ikke tidligere vært ført regelmessig og systematisk tilsyn, så dette er et krevende, omfattende og langvarig arbeid. Bygningene er kun registrert, når virksomheten i disse faller inn under betegnelsen særskilt brannobjekt. Dette er et fåtall i forhold til antall bygninger. I løpet av de siste årene er det gjennomført systematisk tilsyn i tre hovedområder for eldre tett trehusbyggeg og ca. 40 % av 1890-gården. Det blir foretatt etterkontroller i 1890-gården. Tilsyn i disse bygningene blir foretatt etter tilgangen av personel lipidserger ved forebyggende avdeling.

Studenter

Studentene er en risikogruppe fordi de relativt hyppig er utsatt for branntiløp og fordi konsekvensen kan bli stor ved brann i studentmiljøene. Den økte sannsynligheten for brann kan knyttes til studentenes livstil, som innebærer festing og bruk av alkohol. Tørrkoking, levende lys, sigaretter, grilling med mer er vanlig forekommende branndåser for denne gruppen. Det viser seg også at studentene hovedsakelig bor i sentrumsnære strøk, ofte i den eldre bebyggelsen, hvor brannsikkerheten ikke alltid er tilfredsstillende. I tillegg er det avdekket mange studentboliger hvor det forekommer bruk av gammelt elektrisk utstyr, underdimensjonerte elektriske anlegg og feil bruk av elektrisk utstyr.
Fyringsanlegg
For å håndtere lovkravene til feiing og tilsyn effektivt og med god kvalitet, utføres tjenesten distriktssvis. Hvert distrikt har tilnærmet lik arbeidsmengde og er bemannet likt. Alle kunder får nå tilbud om minimumstjenesten feiing og tilsyn hvert 4. år. I tillegg utføres feiing årlig i de fyringsanlegg der dette er nødvendig. Feieavdelingen er tilnærmet å jour i henhold til planlagt framdriftsplan på feiing og tilsyn i alle kommuner.

For distriktenes i Trondheim kommune er myndighetsutøvelse og juridisk oppfølging av fyringsanlegg utført kontinuerlig, og i de andre distriktenes (kommunene) er dette arbeidet startet opp fra og med 2015.

Farlig stoff
Etter innføring av ny forskrift om håndtering av farlig stoff, forventes det også at brann- og redningstjenesten skal foreta tilsyn med farlig stoff. Dette er et område som ikke har vært prioritert tidligere. TBRT deltar på tilsynsaksjoner i regi av DSB og har fokus på lagring og håndtering av farlig stoff i forbindelse med tilsyn.

Pyroteknisk vare/fyrverkeri
Brann- og redningstjenesten behandler søknader om avfyring av pyroteknisk vare hele året. Dette gjelder avfyring som krever sertiferingsbevis, både ute og inne, og publikumstilgjengelig fyrverkeri. Det eneste unntaket om å søke brann- og redningstjenesten er avfyring av publikumstilgjengelig fyrverkeri nyttårssaften utenfor forbudssonen for avfyring av fyrverkeri.

I forbindelse med salg av fyrverkeri i romjulen behandler brann- og redningstjenesten søknader om handel med og lagring av fyrverkeri. Det gjennomføres kontroller med disse utsalgsstedene/lagrene i romjulen.

Annen lovpålagt saksbehandling
Det forebyggende arbeidet innebærer også saksbehandling i alle kommunene som avklaring i forhold til adkomst- og innsatsmuligheter for rednings- og slokkemannskaper, brannkummer, meldinger om ulike typer arrangement og søknader om bålbrenning.

Vedtak/forskrifter
Vedtak/forskrifter som er vedtatt av Trondheim kommune, er følgende:

- Forbud mot avfyring av fyrverkeri i sentrale deler av Trondheim kommune (fyrverkeri som selges til publikum).
- Adgang til å føre tilsyn med bygninger og eiendommer i områder med tett trehusbebyggelse, murgårder med trebjelkelag, samt omsorgsboliger.
Oppdal kommune har lokal forskrift om tilsyn i omsorgsboliger. De andre kommunene har ikke tilsvarende lokale vedtak/forskrifter. Rissa kommune har vedtatt en lokal forskrift om forbud mot bruk av fyrverkeri i Råkvåg.

Kontroller

Trøndelag brann- og redningstjeneste IKS har jevnlig vært på nattkontroller på utesteder, unntatt i 2014. Bakgrunnen for nattkontrollene er å se hvordan utelivsbransjen fungerer i drift. Det viser seg å være alt fra samsvar mellom teori og praksis til at teorien ikke er overført tilstrekkelig i drift. Ved opphold i slike kontroller ser vi at bransjen blir mer ”avslappet” i forhold til brannsikkerhet. I tillegg er det ofte eierskifter, noe som også fører til at brannsikkerhet ikke blir ivaretatt tilstrekkelig.

Informasjons- og motivasjonstiltak

Brann- og redningstjenesten skal gjennomføre motivasjons- og informasjonstiltak med intensjonen å forebygge brann og andre akutte ulykker.

Flere kampanjer utføres i dag av alle hele regionen, blant annet i regi av DSB. Her kan nevnes:

- **Åpen brannstasjon** som gjennomføres årlig, i forbindelse med Brannvernuka i september/oktober.
- **Aksjon boligbrann** som gjennomføres årlig i desember, med besøk i boliger. Det gis informasjon, bistand til test av røykvarsler og til skifte av batteri i røykvarsleren.
- **Røykvarslerens dag**, 1. desember hvert år.
- **Hyttekampanjen** som gjennomføres hvert år i forbindelse med påskeferien.
- **Trygghet i symfoni** gjennomføres hvert år på vårparten, sammen med Trondheim symfoniorkester. Da treffes først og fremst eldre og folk som har behov for assistanse i hverdagen.

Lokale samarbeidspartnere som el-tilsyn og forsikringsbransje involveres der det er naturlig.

Hvert år blir det gitt informasjon om brannsikkerhet til høyskolestudenter i Trondheim i forbindelse med skolestart. For å måle effekten av dette arbeidet er utarbeidet en studentundersøkelse som blir sendt ut til alle studenter i 2015.
I tillegg gir brann- og redningstjenesten informasjon til skoleelever og barnehagebarn. Informasjonstiltak utføres også ovenfor eldre, brannvernledere, flyktninger/innvandrere med flere.

I 2014 gjennomførte hele brann- og redningstjenesten en kampanje om forebygging av utvendig brannstart. Det ble delt ut de såkalte *røde kort* til bygninger med utvendig lagring. Denne kampanjen blir minimum videreført i 2015. Brannene som har vært den senere tiden, understreker at dette er et tema som det er viktig å ha oppmerksomhet på.

Brann- og redningstjenesten har utarbeidet *Bjørnis*-konseptet. Brannbamsen Bjørnis er en bamse som primært er utviklet for å møte barns behov for omsorg og trygghet ved ulykker og ved traumer, og for å vekke barns interesse for forebyggende brannvernarbeid. Brannbamsen skal også benyttes i annet helsefremmende og forebyggende arbeid for å sikre barnevelferd.

Kompetanse

Samarbeid med andre

Forebyggende forskriften angir i kapittel 5 *Kommunens brannforebyggende oppgaver* at kommunen skal sorge for at brannvesenet samarbeider med andre etater/myndigheter i kommunen. Dette gjelder spesielt helsetjenesten og plan- og bygningsmyndighetene. Det er også krav til kommunen å tilrettelegge for sikker vannforsyning og for adkomstmuligheter for brannvesenet.

Flere eldre bor lenger hjemme i dag enn tilfellet var tidligere. Vissheten om dette, gjør at brann- og redningstjenesten arbeider for å få til et enda tettere samarbeid med hjemmetjenestene, feiervesenet, ergoterapeuter, leger, el-tilsynet og så videre, i forhold til brannsikkerhet for risikoutsatte grupper. Disse aktorene møter mange av de risikoutsatte
personene daglig, i deres eget hjem, og har derfor en god mulighet for å fange opp personer som er ekstra risikoutsatt og bidra til at risikoen reduseres. Det er utarbeidet en prosjektrapport med hensyn på denne gruppen, og det ansettes en person i hel stilling som skal arbeide med denne utfordringen. Det vises til Prosjektrapport Trygg hjemme 2015 utarbeidet av Trøndelag brann- og redningstjeneste IKS.

I forbindelse med informasjonskampanjer gjøres dette ofte i samarbeid med andre aktører etter behov.

Brann- og redningstjenesten har videre et samarbeid med blant annet lokalt el-tilsyn, politi, ”skjenke-kontrollen”, mattilsyn, arbeidstilsyn og City-teamgruppen (Trondheim kommune).

2.2 Dagens beredskapssituasjon

Det er gjort grundige vurderinger i forkant av beslutningen om brannstasjonsstruktur i Trondheim og Klæbu. Disse vurderingene og beregningene/simuleringene av innsatstid tar høyde for demografi og framtidig veistruktur, herunder Sluppen bru.

Brann- og eksplosjonsvernloven § 11 regulerer brannvesenets oppgaver. I tillegg til bestemmelsen om å være innsatsstyrke ved brann, beskriver paragrafen blant annet følgende: Brannvesenet skal være innsatsstyrke ved andre akutte ulykker der det er bestemt med grunnlag i kommunens ROS-analyse.

Brannvernregionen praktiserer i dag innsatsplikt på:

- Trafikkulykker
- Ulykker med farlig gods
- Ulykke på jernbane og trikk
- Ulykker i tunnel og i kraftverk
- Brann i skip i havneområde
- Drukningsulykker (havneområder, vatn og elv)
- Småbåtulykker i havneområdet
Risiko- og sårbarhetsanalyse
Trondheim, Malvik, Klaebu, Rennebu, Oppdal, Rissa og Leksvik
Trøndelag brann- og redningstjeneste IKS

- Fritids-/arbeidsulykker (inkludert redning i høyde)
- Flyulykker
- Vannskade/oversvømmelse
- Sammenrasninger (bygninger, anlegg)
- Hjertestans
- Selvmord (forhandlingskompetanse til førstehjelp ved selvmordsfare)

De ulike ulykkestypene kan være spesialisert ved enkelte brannstasjoner/kommuner, slik at kapasitetene i en innsats kan komme fra andre steder i regionen. Det betyr at førsteanlegg og innsatstiden i forbindelse med ulykker med innsatsplikt ikke vil være lik i hele regionen. Ved akutte ulykker med innsatsplikt skal beredskapen ha innsatsplaner, være bemannet, inneha kompetanse, være øvd og ha egnet utstyr for å løse oppdraget.

Politiet har som oppgave og ansvar å koordinere innsatsen både ved brann- og ulykkestilfeller. Inntil politiet kommer til stedet er det i følge brann- og eksplosjonsvernloven § 12c, leder av brannvesenet som har ordensmyndighet. I flere av kommunene i brannvernregionen er det ikke usannsynlig at brann- og redningstjenesten vil være på plass lenge før politiet også i situasjoner med pågående livstruende vold.

Innenfor alle andre hendelsestyper enn de som inngår i innsatsplikt har regionen bistandsplikt, eksempelvis ras, flom og terror. Slike hendelser er ikke dimensjonerende for Trøndelag brann- og redningstjeneste IKS. Brann- og redningstjenesten benytter da eksisterende kapasiteter i henhold til brannordningen og gjør så godt det lar seg gjøre med tilgjengelege ressurser (personell, materiell og kompetanse). Bistandsplikt er plikt til, etter anmodning, å yte bistand i akuttsituasjoner med tilgjengelige ressurser.

I regionen er det 12 brannstasjoner, med følgende organisering:
- De fire brannstasjonene i Trondheim er organisert i lag av heltidspersonell med kasernert vakt.
- I Malvik er det deltidspersonell med dreieende vakt.
- I Rissa er det tre brannstasjoner. Disse er organisert som følger:
 - I Rissa er det deltidspersonell med dreieende vakt.
 - I Stadsbygd er det deltidspersonell uten vaktordning.
 - I Stjørna er det deltidspersonell uten vaktordning.
- I Leksvik er det to brannstasjoner; Leksvik og Vanvikan. Begge har deltidspersonell uten vaktordning. I Leksvik er det i tillegg deltidspersonell med dreieende vakt 5 uker i ferietiden på sommeren (hovedsakelig ukene 27-31).
- Oppdal kommune har en brannstasjon på Oppdal med deltidspersonell med dreieende vakt.
- Rennebu har en brannstasjon på Berkåk. Denne har deltidspersonell uten vaktordning.
Dersom omsorgsboliger/sykehjem på Stadsbygd legges ned, må behovet for brannstasjon på Stadsbygd vurderes.

Figur 2: Figuren viser plassering av de ulike brannstasjonene i regionen og organisering av disse. Leksvik brannstasjon har deltidspersonell med dreien vakt 5 uker på sommeren. Rødt fylt med en \(K \)=Kassernert vakt, Lilla fylt med en \(V \)=Deltidspersonell med dreien vakt, Blått fylt med en \(D \)=Deltidspersonell uten vaktordning

Figur 3 viser at av de reelle oppdragene, var flest utrykninger til *trafikkulykke* i Trondheim, med *brann i bygning* som nr. 2, når det ses bort i fra *brannhindrende tiltak* og samleposten *diverse annet*. I figuren er det ikke tatt med *unødige alarmer* generelt og *unødige alarmer fra vekterselskap*. *Brannhindrende tiltak* innebærer at, dersom tiltak ikke ble gjort, ville det høyst sannsynlig blitt brann.

Risiko- og sårbarhetsanalyse
Trondheim, Malvik, Klæbu, Rennebu, Oppdal, Rissa og Leksvik
Trøndelag brann- og redningstjeneste IKS

Figur 4: Utrykninger i Klæbu i 2011-2014

Figur 5: Utrykninger i Malvik i 2011-2014
Figur 6: Utrykninger i Rissa i 2011-2014

Figur 7: Utrykninger i Leksvik i 2011-2014
Figur 8: Utrykninger i Rennebu i 2012-2014

Figur 9: Utrykninger i Oppdal i 2012-2014
Nedenfor vises fordeling av reelle oppdrag med unødige og falske alarmer i 2011-2014:

<table>
<thead>
<tr>
<th>Kommune</th>
<th>Brannskadeerstatning 2005-2013 (kroner)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trondheim</td>
<td>55.227.000 – 162.624.824</td>
</tr>
<tr>
<td>Malvik</td>
<td>1.441.000 – 15.313.799</td>
</tr>
<tr>
<td>Klæbu</td>
<td>66.000 - 1.249.000</td>
</tr>
<tr>
<td>Rissa</td>
<td>2.463.000 – 24.294.782</td>
</tr>
<tr>
<td>Leksvik</td>
<td>520.000 – 5.535.000</td>
</tr>
<tr>
<td>Rennebu</td>
<td>238.000 – 15.160.000</td>
</tr>
<tr>
<td>Oppdal</td>
<td>488.803 – 11.065.000</td>
</tr>
</tbody>
</table>

Denne statistikken er hentet fra SSB. Vi ser at variasjonene i de små kommunene er prosentvis mye større enn i Trondheim. En brann i en liten kommune som medfører store erstatninger, kan gi store utslag på statistikken. I en stor kommune vil det nødvendigvis ikke få samme utslag, da antallet hendelser er flere og en brann ikke trenger å vises så tydelig på statistikken.
I vedlegg til denne rapporten er blant annet følgende statistikk vist:

- Brann- og redningstjenestens utrykninger i 2011-2014 (Sør-Trøndelag 110-sentralen)
- Årsaksfordeling bygningsbranner 2009-2011 på landsbasis (innrapportert til DSB)
- Brannårsaker og omkomne på landsbasis (hovedsakelig hentet fra DSB)
- Skadeutbetalinger etter branner på landsbasis 2005-2015 (Norsk brannvernforening)

Kompetanse
Kompetansekravet i henhold til dimensjoneringsforskriften ivaretas fortløpende i takt med kapasiteten ved Norges Brannskole. Det vil bli avholdt beredskapskurs 1 i tidsrommet høst 2015-vår 2016 for utrykningsledere deltids.

Overordnet vakt
Overordnet vakt, vakthavende brann- og redningssjef, har ukesvakt fordelt på 4 personer for hele brannverregionen, med hovedbrannstasjonen på Sluppen som utgangspunkt. Alle personene som inngår i denne vaktordningen har nødvendig kompetanse. Dette er ikke personer som inngår i innsatsstyrken.

2.2.1 Innsatstid
Innsatstiden er i dimensjoneringsforskriften definert som *tiden fra innsatsstyrken er alarmeret til den er i arbeid på skadedestet*. Det betyr at innsatstiden er den tiden det tar fra innsatsmannskapene får varsel om brann til de har vann på strålerøret og er klar til innsats. Det er valgt å dele innsatstiden inn i tre faser:

- fra alarm går til utrykning fra stasjon skjer (oppmøtetid og forspenningstid) – 1 minutt for kasernert utrykningspersonell, og 4 minutter på dag og 6 minutter på natt for deltidspersonell med/uten vaktordning
- kjøretid (1 min per km)
- rigging og klargjøring for innsats – 2 min

Veiledning til dimensjoneringsforskriften beskriver kjøretiden for generell innsatstid: Kjøretiden, som er en del av innsatstiden, beregnes etter fartsgrensen på aktuelle strekninger. Fartsgrensen er satt etter hva som anses som forsvarlig hastighet på strekningen ut fra en risikobetraktning, og brannvesenet bør derfor ikke planlegge for kjøring med høyere hastighet.

Når det gjelder rehabiliteringssenteret Betania i Malvik er innsatstiden over 10 minutter. Det også her uklart om dette kommer inn under definisjonen på sykehus/sykehjem. Dette senteret vil bli erstattet med nye bygg i nær framtid. I den forbindelse forventes det at det blir tatt høyde for kravet om innsatstid.

Figur 11: Innsatstid i Trondheim, Klæbu og Malvik
Figur 12: Innsatstid i Rissa og Leksvik

Bygninger som ligger utenfor kravet til 30 minutters innsatstid er en leirskole i Oppdal og flere turisthytter både i Oppdal og Rennebu. En fjellstue som er et overnattingssted, består av en rekke verneverdige bygninger oppført i trekonstruksjon i en tett klynge. For å kompensere for blant annet lang utrykningstid og trembebyggelse, er det opprettet en egen "brannstasjon" med slokkeutstyr, pumpestasjon og vannkilde. Det finnes overnattingssteder og verneverdige bygninger med lang innsatstid i regionen, hvor det ikke er etablert tilsvarende tiltak.

Det arbeides med å få til en vurdering av risikoreduserende tiltak i disse bygningene for å kompensere for den lange innsatstiden.
I vedleggsdelen er kartene over innsatstiden gjengitt i større format.

2.2.2 Vannforsyning

Tilgang til slokkevann er nødvendig i en brann. Kartlegging viser at underlaget for status på brannvannskapasiteten i enkelte kommuner er mangelfullt. Det er derfor vanskelig å konkludere med status per i dag. Inntil en tilfredsstillende undersøkelse forligger, må brann- og redningstjenesten ha beredskap på tankbil.

I forebyggendeforskriften § 5-4 Vannforsyning, settes det krav til kommunen om å sørge for slokkevann. Tankbil kan benyttes som erstatning i boligstrøk med liten spredningsfare (ikke tettbygd strøk). I følge dimensjoneringsforskriften § 5-5 Beredskap for høyderedskap og tankbil skal dette i tilfelle være vedtatt av kommunen, jf. også forebyggendeforskriften § 5-4 Vannforsyning. Ved etablering av passenger/åpne kilder må en vurdering ligge til grunn, og det forutsettes blant annet tilrettelegging for brann- og redningstjenesten, både med hensyn på adkomst og innsats hele året, pumpeplass og at vannledninger og nødvendig slokkevann ikke fryser. Det må sies at en slik løsning kan utgjøre en forsinkelse i forhold til beredskapstyrkens arbeid på stedet og i verste fall vanskeliggjøre innsatsen. Dette er ikke en anbefalt løsning. Veiledningen til teknisk forskrift til plan- og bygningsloven angir at det bør være vannledning med uttak på minimum 20 l/s (vannkapasitet) i tilknytning til småhus, og for annen bebyggelse minimum 50 l/s fordelt på minst to uttak. Vannforsyningen må kunne dekke behovet for ulike typer sprinkler, der dette er installert.

Trondheim kommune har utarbeidet en oversikt som viser vannkapasiteten i kommunen. Kartet skal danne grunnlag for prioriteringer ved utbedringer av vannledningsnettet.
I Malvik og Klæbu er det også utarbeidet kart over vannledningsnettet, delvis med henvisning til vannkapasitet. Det arbeides med å få en tilsvarende oversikt fra de andre kommunene.

2.2.3 Høyderedskap

Brann- og redningstjenesten har kun høyderedskap utplassert i Trondheim kommune. I tidligere tider har det i noen få tilfeller blitt gitt aksept på at brannvesenets høydemateriell kan være alternativ rømningsvei i bygninger i Trondheim. Det finnes ikke en oversikt over hvilke bygninger dette gjelder, men dette er hovedsakelig i midtbyen. For å akseptere dette, var det flere vilkår som måtte være oppfylt.

Det finnes et ukjent antall bygninger, spesielt i Trondheim, som bare har ett trapperom, blant annet boligblokker som hovedsakelig ble oppført på 60-, 70- og 80-tallet. I disse kan det bli aktuelt å evakuere personer via stige eller høyderedskap ved brann. Det finnes ikke oversikt over hvilke bygg dette gjelder. Flere av kommunene utenfor Trondheim har enkelte fleretasjes bygninger som gir utfordringer ved brann.

Høyderedskap er et viktig arbeidsredskap ved bekjempelse av brann, selv i lavere bygninger.

2.2.4 Utvendig slokkeinnsats

Byggetrend med innglassede balkonger, store glasspartier i fasade (derved manglende ”kjølesone”) og brennbar ytterkledning er løsninger som kan få betydning i slokkearbeidet. Det finnes ingen oversikt over hvilke bygg som har en slik utforming.

2.2.5 Sammenrasninger av bygg og anlegg

2.2.6 Status vedrørende planverk

Brann- og redningstjenesten har utarbeidet objektplaner for de viktigste objektene i vår region. Det er fortlopende åjourføring av disse og en stadig utvidelse med hensyn til flere områder og objekt. Dette er kontinuerlig arbeid som brann- og redningstjenesten ikke blir ferdig med.
2.2.7 Samarbeid med andre

I forbindelse med større aksjoner, hvor det kreves et større apparat enn kun innsatspersonell, settes det ned en såkalt stab for å understøtte aksjonen. Ulike funksjoner innenfor brann- og redningstjenesten og IUA (se kapittel 2.4) sitter i denne gruppen etter behov. Det kan bli behov for assistanse fra andre instanser. Ved større hendelser er det også naturlig at kommunen iverksetter egne beredskapstiltak med eventuelt etablering av kommunens kriseløsning.

2.3 Nødalarmeringssentral
Sør-Trøndelag 110-sentral er et interkommunalt samarbeid mellom 26 kommuner, der Trondheim kommune er vertskommunen for samarbeidet. 110-sentralen er lokalisert i et eget bygg på Sluppen i Trondheim, ved siden av hovedbrannstasjonen. Det er i sentralen alltid minimum 2 alarmoperatører på vakt, støttet av egne IT-teknikere. Sentralen har 5 vaktlag, med tre mann, der det er en vaktleder per lag. Operatører ved Sør-Trøndelag 110-sentral, er kvalifisert i henhold til dimensjoneringsforskriften § 7-5 Operatører på nødalarmeringssentral.

2.4 Interkommunalt utvalg mot akutt forurensning (IUA)
Akutt forurensning defineres som et utslipp som inntreffer plutselig, er av en viss mengde og som ikke er gitt tillatelse. Ansvaret for beredskaps- og aksjonsplikten ved akutt forurensning deles inn i tre nivå. Skadevolder er i utgangspunktet alltid ansvarlig for å rydde opp eget utslipp. Dersom skadevolder ikke kan, eller skadevolder er ukjent, er det kommunen som er pliktig å aksjonere. Er hendelsen over en viss størrelse blir det en statlig aksjon og Kystverket
overtar. Kystverket er den statlige myndigheten for alle typer akutt forurensning, uavhengig av geografisk plassering.

IUAs rolle er å styrke kommunens beredskap, samt evne til å håndtere hendelser lokalt. Dette gjøres gjennom plassering av utstyr, kompetansehevende tiltak i form av kurs og øvelser, samt fokus på samarbeid mellom kommunene i regionen.

Utstyr er plassert i forskjellige depot fordelt i hele regionen. IUA Sør-Trøndelag har 2 store depot, med ekstra utstyr som kan flyttes dit det er nødvendig. 8 mellomstore depot som er tilpasset lokale forhold, der noen har fokus på farlig gods og trafikk og noen har fokus på oljevern. Til slutt har de resterende 20 kommuner små depot for å kunne yte en ”første innsats”, mens man eventuelt flytter ressurser fra de større depotene.

Dersom kommunene har behov, vil IUA kunne bistå med personell på alle nivå i innsatsen, samt bistå kommunen med administrative oppgaver knyttet til håndtering av akutt forurensning.

Statistikk fra Sør-Trøndelag 110-sentral viser at det er mellom 40-60 hendelser med akutt forurensning per år i regionen. De fleste hendelsene er mindre oljelekkasjer fra kjøretøy og tankanlegg. I noen tilfeller har lekkasjene ført til utslipp i bekker/elver eller i havneområdet i Trondheim. De aller fleste hendelsene har blitt håndtert av lokalt brannvesen med kun mindre aksjonsstøtte fra IUA.
Figur 14: Kartutsnittet viser IUA-området og plassering av utstyrdepotene i Sør-Trøndelag. Rødt=Stort depot, Blått=Mellomstort depot, Grått=Lite depot
3. Analyse av branner

Dagligdagse hendelser er omtalt i kapittel 2.2. Dette er statistikk over utrykninger som brann- og redningstjenesten har blitt utkalt til de seneste årene. Vedleggene viser en mer detaljert statistikk over slike utrykningstyper i tidsrommet 2011-2014. I de dagligdagse hendelsene vil også større hendelser inngå, se kapittel 3 og 4 for beskrivelse av slike hendelser. Ut i fra de foreliggende statistikkene over utrykningstyper, kan det være mulig å trekke ut tendenser, men antallet branner og ulykker er likevel for lavt til å kunne trekke bastante konklusjoner. Det er mulig å sammenligne de enkelte brann-/ulykke- og skadeområdene mot det nasjonale nivået for å få en pekepinn på hvordan situasjonen er. I arbeidet med ROS-analysen, har det ut fra tidshensyn og ressurser, ikke vært mulig å gjennomføre omfattende analyser/vurderinger av foreliggende statistikk.

I kapittel 3.1 blir det gitt en kort beskrivelse av den generelle tilstanden i bygninger/områder, ved midlertidige arrangement, i skogområder og i tuneller, samt forholdene rundt transport og lagring av farlig gods/stoff, lagring av eksplosiver, spesielle samfunnsviktige funksjoner og sårbare områder. I kapittel 3.2 gjennomføres en grov analyse av risikoen for branner i regionen.

3.1 Kartlegging av tilstanden i bygninger/områder med mer
3.1.1 Bygninger/områder

I tilleggsrapportene er det foretatt en kartlegging av tilstanden i bygninger/områder ut i fra kjenndrap per dags dato. Det er ikke foretatt en brannteknisk statusbeskrivelse i de enkelte bygningene, men det er hovedsakelig opplysninger fra siste tilsyn, lokalkunnskap og erfaring som ligger til grunn. Kartleggingen har hatt som formål å gi et bilde av hvilke områder og bygningstyper analysen skal fokusere på i det senere arbeidet.

I følge opplysninger fra siste tilsyn kan det på generelt grunnlag sies at risikoen hovedsakelig er tilfredsstillende i henhold til nasjonale bestemmelser i flere av objektene. Enkelte bygninger når likevel ikke opp til dagens krav når det gjelder brannsikkerhet. Kun bygningstyper er omtalt i denne rapporten.

For bygg/områder som det ikke er ført tilsyn med, finnes ikke like utfyllende opplysninger. Erfaring viser at sikkerhetsnivået er varierende. Elderne byggverk er ikke alltid oppgradert tilfredsstillende og tilstrekkelig brannsikkerheten i nyere bygg kan også være mangelfull.

Generelt tilsier erfaringer med brann i ubeskyttede større trebygninger eller bygninger med høy brannenergi, at de er vanskelig å slokke, og at resultatet dermed ofte blir totalskade. Konsekvensene vil derfor være store ved brann i nevnte bygninger.

Når det gjelder bygg som er oppført etter nyere forskrifter, skal tilfredsstillende forskriftsnivå være dokumentert i henhold til plan- og bygningsloven. I enkelte tilfeller er det likevel i ettertid oppstått diskusjoner om hvorvidt brannsikkerheten er tilfredsstillende ivaretatt.
Med bakgrunn i byggenes status, som for eksempel verneverdige trett trehusbebyggelse og fredet bebyggelse bør ytterligere sikringstiltak vurderes i samarbeid med eier og antikvarisk myndighet. Stortingsmelding nr. 35 foreslår en kartlegging av risikoen for brann og en plan for etablering av nødvendig organisatoriske og tekniske tiltak slik at brannsikkerheten er ivaretatt på en tilfredsstillende måte. Gjeldende byggeforskrift med veiledning § 11-7. 1 ledd si r i veiledningsteksten: "Byggverk som representerer store kulturhistoriske verdier bør ha automatisk slokkeanlegg uavhengig av areal. For ikke å skade konstruksjoner og inventar, kan det være aktuelt å benytte anlegg som bruker mindre vann enn andre slokkemiddel enn konvensjonelle sprinkleranlegg ". Målet er et det ikke skal inntreffe branner med tap av uerstattelige verdier.

Påsatte branner utgjorde på landsbasis i 2009-2011 ca 8,5 % av alle brannene. 21,6 % av brannene hadde ukjent årsak. Hvor stor andel påsatte branner utgjorde er derfor noe usikkert. Påsatte branner er umotiverte påsatte branner, ofte utvendig. Det er derfor viktig at huseierne/brukerne blir bevisst viktigheten av å holde det blant annet fritt for utvendig lagring/containere i nærheten av brennbare bygg og fritt i rømningsveier. Å fastsette denne risikoen er vanskelig. Siste tids hendelser har avdekket at dette en utfordring.

For å minske risikoen for ulykker på veier er det etablert midtdeler på enkelte steder. Det er likevel utfordringer når det gjelder uhell både på vei og jernbane.

I den etterfølgende analysen er det hovedsakelig kun sett på byggenes/områdenes bygningstekniske standard og de organisatoriske forholdene. Derimot, ved vurdering av risikoen, er det også tatt hensyn til innsatstid og forhold rundt vannforsyning.

I det følgende gis et sammendrag av tilleggsrapportenes kartlegging av brannsikkerheten til bygninger/områder i regionen:

Fredet bebyggelse
Det er et høyt antall fredede bygg i området. I kommunene er fredet bebyggelse hovedsakeligregistrert som særskilt brannobjekt, og det blir således ført tilsyn med disse. Flere kommuner har viktige uerstattelige kulturminner. Disse er hovedsakelig registrert som særskilt brannobjekt.

Ved vurdering av teknisk og organisatorisk standard i bygningene vil en generelt kunne anta at totaltap kan unngås for flere av bygningene. Arbeidet med kartleggingen viser likevel at det fortsatt er bygg som kan totalskadet.

Verneverdige bygg/ kulturhistorisk bebyggelse/trett trehusbebyggelse
I enkelte kommuner finnes det ikke bygninger eller anlegg som er fredet, men hvor for eksempel museer og bygninger har vernetatus, og som lokalt er viktig å bevare. Det er
Risiko- og sårbarhetsanalyse
Trondheim, Malvik, Klaebu, Rennesbu, Oppdal, Rissa og Leksvik
Trøndelag brann- og redningstjeneste IKS

 gjennomført tilsyn på en del av objektene i disse kommunene. Status på resterende objekt er ikke kartlagt.

Det er store utfordringer med brannsikkerhet, spesielt i Trondheim, der det er høy andel av eldre tett trehusbebyggelse, brygger, murhus med trebjelkelag og en betydelig mengde bygninger med status som vernet eller fredet. Det er i kommunen stor politisk vilje til å bevare den eldre bebyggelsen i byen.

I Trondheims eldre sammenhengende trehusbebyggelse gjennomføres det også jevnlig tilsyn i bryggeregikkene og i enkelte bygg som benyttes til spesielle formål (større butikker, restauranter og lignende som kommer inn under kategorien særskilt brannobjekt). I de andre kommunene er det ikke registrert sammenhengende områder som kommer inn under den nasjonale definisjonen verneverdig eldre tett trehusbebyggelse.

I enkelte områder i Trondheim, med eldre, ofte tett trehusbebyggelse, er det etter hvert blitt et stort press på utele til hybler (Ila/Rosenborg/ Bakklandet/ Møllenberg/ Midtbyen). Hybler leies ofte ut til studenter. Bruken av og det lave sikkerhetsnivå til bygninger, i tillegg til økning i antall personer, kan medføre større fare for tap av menneskeliv ved en brann.

I kommunene finnes også flere kirker som er listeført hos Riksantikvaren. Kirkene er stort sett registrert som særskilte brannobjekter. I tillegg finnes det viktige kulturhistoriske bygg og områder som er regulert til bevaring.

Rissa har et område med eldre tett trehusbebyggelse som er spesiell. Den gamle bryggerekka i Råkvåg betegnes å være unik og den største samling av sildebrygger utenom byene. Flere av bryggene er oppført på slutten av 1880-tallet. To av bryggene er sikret med sprinkleranlegg.
Risiko- og sårbarhetsanalyse
Trondheim, Malvik, Klæbu, Rennesbu, Oppdal, Rissa og Leksvik
Trøndelag brann- og redningstjeneste IKS

Bryggerekka er nylig blitt registrert som særskilt brannobjekt og det ble i 2014 ført tilsyn i denne. Det ble også utført en bacheloroppgave av branningeniørstudenter fra Haugesund under veiledning fra forebyggende avdelingen i TBRT. Oppgaven med forslag til tiltak er levert bryggeeierne og kan brukes som grunnlag for å utbedre brannsikkerheten i Råkvåg. Det arbeides nå med finansiering av de foreslåtte tiltakene for bryggerekkken. Frem til det er blitt gjennomført tilstrekkelige forebyggende tiltak, både teknisk og organisatorisk, vil risikoen for en større brann i enkelte bygninger og områdebrann og være til stede.

Av erfaring vet man at brann i et usikret bygg er meget vanskelig å slokke og man kan ikke se bort i fra totalskade.

Omsorgsboliger
"Omsorgsboliger" defineres her som boliger for ≥4 personer som har behov for assistert rømning og der det er etablert vaktordning. De fleste av omsorgsboligene i kommunene er særskilt brannobjekt, og det føres således tilsyn hvert år i disse byggene. En stor del av omsorgsboligene har i senere tid blitt brannteknisht utbedret.

Boliger/fritidshus, unntatt eldre tett trehusbebyggelse

Generelt anses ikke den bygningstekniske risikoen å være større enn på nasjonalt nivå, unntatt der det mangler brannskiller mellom bruksenheter og/eller avstanden mellom bygg er mindre enn 8 meter (gjelder spesielt eldre bebyggelse). Det er ikke foretatt kartlegging av denne type bygninger.

I Trondheim kommune er det mange boligblokker. Inntil nylig er det ført tilsyn med fellesarealer i enkelte av de høyeste boligblokkene. I større blokker med mange mennesker og der det ikke er ført tilsyn, kan det være mulighet for "de største"13 brannene også der bygningene er oppført etter nyere byggeforskrifter. Årsaken kan være dårlig branntetting (brannskille) mellom ulike brannceller, useksjonerte loft og mulighet for takbranner. I regionen utenfor Trondheim kommune, er ikke dette ennå en så utbredt byggeskikk.

Hjemmeboende eldre personer er en stadig økende utfordring i vår region som ellers i landet. Flere eldre bor også i denne type bygninger og mange med hjemmetjenester fra kommunene. Ved brann må mange eldre ha assistert evakuering ved brann.

13 Se vedlegg 2
"1890-gårder"

Murhus med trebjelkelag (såkalte 1890-gårder) er gjennom tidligere ROS-arbeider og tidligere og gjeldende Strategiplan for forebyggende brannvern påpekt som risikobygg og er derfor en prioritert bygningstype. Trondheim kommune har cirka 500 slike bygg og det foretas nå systematisk tilsyn av denne type gårder. Så langt er det ført tilsyn med ca en tredjedel av gårdene. Hovedinntrykket så langt er at 1890-gårder kun delvis har foretatt oppgraderinger i henhold til dagens lover og forskrifter. Disse gårdene medfører derfor stort ressursbruk og oppgraderinger skjer ofte over en lang tidsperiode. Inntil disse byggene er oppgradert forskriftsmessig, kan det være fare for tap av liv og at brannene kan bli store. I de andre kommunene er det ikke denne type gårder. Som for verneverdig tett trehusbebyggelse er dette et langvarig arbeid og framgangen er avhengig av tilgang til personellressurser.

Figur 15: Områder med 1890-gårder

Barnehager, skoler og universitet

Skoler og barnehager har vært underlagt tilsyn etter forebyggendeforskriften som særskilte brannobjekter. Det er mange skoler og barnehager i området, med mange elever og ansatte.

Et av Norges største universitet ligger i Trondheim, med et samlet gulvareal på ca. 500.000 m². Dette består blant annet av flere store forsamlingslokaler (auditorium og liknende). Mye av bygningsmassen er gammel og det foregår en del forskning med bruk av farlig stoff.

14 Forskrift om brannforebyggende tiltak og tilsyn
Potensialet for en stor brann/ulykke er til stede.

Forsamlingslokaler/serveringssted
Forsamlingslokaler/serveringssteder er registrert som særskilte objekter og gjelder blant annet forsamlingshus, utesteder, grendehus, samfunnshus, kirker og idrettshall. Det er utfordrende å holde brannsikkerheten på et akseptabelt nivå blant annet på grunn av hyppig utskifting av leietakere/eiere og personell.

Flere av lokalene kan ha mange personer inne samtidig. Konsekvensen av en brann kan derfor bli stor.

Industri, lager, kontorer og garasjeanlegg

De større industribygningene er registrert som særskilte brannobjekter og det føres jevnelig tilsyn.

Salgslokaler/kjøpesenter
I kommunene er større salgslokaler/kjøpesenter registrert som særskilte objekter. Slike bygninger har ofte store åpne arealer. På bakgrunn av de store åpne arealene kan en brann medføre betydelige økonomiske tap dersom tiltak som brannalarmanlegg, alle funksjonene som skal styres av brannsentralen, sprinkleranlegg og røykventilasjon ikke fungerer som forutsatt. Utvendig lagring ved salgsstedene, samt for høy lagring opp mot sprinklerhodene, kan også bidra til at en oppstått brann blir vanskelig å kontrollere.

Overnattingssteder
Det føres tilsyn i objekter som drives som overnattingssteder/hoteller. Utfordringer er evakuering av store grupper med gjester som ikke er kjent i bygget. De fleste hoteller i regionen har et tilfrestillende sikkerhetsnivå. I de overnattingsstedene (turisthytter og gjestegårder) som ikke anses å ligge innenfor det nasjonale nivået, kan en brann kunne medføre store konsekvenser. Disse er i tillegg plassert langt fra nærmeste brannstasjon, med lang utrykningstid.
Sykehus og pleieinstitusjoner
Det er flere sykehus og pleieinstitusjoner i kommunene. Byggene er særskilte brannobjekter og det føres således årlig tilsyn med disse. Utfordringen er det store antall personer som er avhengig av assistert evakuering. I denne typen bygninger stilles det spesielt gode evakueringsskunnskaper til de ansatte.

Landbruksbygg – Storfjøs
Landbruksnæringen er som ellers i landet redusert, spesielt innenfor husdyrholdet. Antallet større landbruksbygninger har økt, og flere av de mindre landbrukene er nedlagt. I hovedsak er bygningsmassen av eldre type, men det er flere store moderne landbruksbyggi i regionen hvor de materielle verdiene er betydelige. I utkantstrøkene er det begrenset tilgang til sløkkevann.

Det er ikke gjennomført tilsyn i landbruksbygg, bortsett fra enkelte samordnende tilsyn i hovedsakelig sammen med Arbeidsstilsynet, El-tilsynet og Mattilsynet. Forebyggende arbeid i landbruksbygg utført av eiere og myndigheter er spesielt viktig for å kunne unngå branner. Overfor landbruksbygg må forebyggende arbeid utført av myndigheter vurderes styrket. I denne type bygg har de overnevnte tilsynsetatene mulighet til å benytte sitt lov- og forskriftsverk for å oppnå tilfredsstillende brannsikkerhet i landbruksbygg med husdyrhold.

Det foreligger ingen god kartlegging av brannsikkerheten i denne type bygninger i regionen. Erfaring fra branner i eldre landbruksbygg viser at dersom en brann ikke blir oppdaget og ”slått ned” i tide, vil det være stor fare for totalskade med tap av mange dyr. Det er ofte lang utrykningstid og dårlig med vann til brannslokking.

3.1.2 Midlertidige arrangement
I regionen er det stor aktivitet i forbindelse med arrangement som festivaler, konserter, telt, martna, overnatting på skoler og liknende. Det vil si arrangementer som varer over en bestemt, ofte kort, tidsperiode. Arrangement kan være både innendørs og utendørs, og skal meldes til brannmyndigheten i god tid før gjennomføring, dersom arrangementet skal avvikles i et bygg eller på et område som ikke er beregnet for denne type bruk. En risikovurdering av arrangementet må foreligge. Det kreves opplysninger som er nødvendig for å vurdere forhold rundt brannsikkerheten.

Det er utfordringer ved ivaretakelsen av sikkerheten ved midlertidige arrangementer og erfaring viser at de ansvarlige for arrangementene ofte har mangelfull kompetanse om regelverket og hva som kreves for å ivareta sikkerheten. Ved arrangement er det en periodveis økning av risikoen i kommunene.

3.1.3 Skogområder
Reglene for bålbrenning i skog og mark er forholdsvis strenge sommerstid. Kommunene har store skog- og markområder. En brann i skogområder er ikke vurdert spesielt for hver
kommune. Beredskapsplaner finnes. Skogbranner er ikke beskrevet i tilleggsrapportene, kun i hovedrapporten under dette underkapittelet.

3.1.4 Tunneler

Gevingåstunnelen som åpnet for trafikk i 2012, er den nyeste av noen få jernbanetunneler over 500 meter i vårt område. Med bakgrunn i den sterke økningen av tunneler, har det vært en diskusjon om risiko generelt i forbindelse med tunneler, eksempelvis risiko ved kjøring i tunneler, risikoen ved undersjøiske tunneler og senketunneler, risiko ved ulik utforming og kledning (høyfast betong kontra vanlig, og bruk av brennbar isolasjon), risiko ved transport av farlig gods, risiko i lange tunneler og tunneler med sterk stigning. Det har også vært diskusjoner om akseptkriterier vedrørende tap av verdier og tap av liv.

Som i landet for øvrig er det flere lange ettløpstunneler i regionen hvor en kan stille spørsmål ved om selvredningsprinsippet er ivaretatt. Gjelder både veg og jernbane.

Veiledning til NS 3901 Risikoanalyse av brann i vegtunneler, av 2000 (revidert 2002), angir at det ved tunneler over 500 meter eller når sikkerheten i eksisterende tunneler må oppgraderes, skal fastlegge en sikkerhetsstrategi for personsikkerhet og annen sikkerhet. Dette kravet innebærer at for nyere tunneler må en kunne forutsette at sikkerheten er i tråd med sentrale myndigheters krav. Utfordringen med de nye tunnelene er imidlertid at trafikkетheten blir høyere enn forutsatt ved prosjektering.

3.1.5 Transport av farlig gods
Transportbestemmelsene er strengt regulert i ADR/RID15 av 1. desember 2006. I tillegg kommer IMDG16 og forskriftene for farlig gods i fly/luftfart (ICAO17).

Det transporteres store mengder farlig gods på veg og jernbane i vår region. Sannsynligheten for en større ulykke i forbindelse med denne transporten anses å være liten, men konsekvenspotensialet stort.

I tillegg til transport definert under ADR-bestemmelsene, er også transport som omfatter blant annet returpapir, trevirke, smør og brunost problematisk. Dette er transport av store mengder brennbare varer som kan gi alvorlige hendelser eller eskalering ved andre ulykker eller branner. Det er betydelig strengere krav til både kjøretøy, sikring av lasten og opplæring av føreren dersom lasten kommer inn under ADR-bestemmelsene.

3.1.6 Lagring av farlig stoff
Innenfor landbruksnæringen lagres det erfaringsmessig en del mindre mengder farlig stoff, fortrinnsvis diesel.

I industriområdene lagres en del farlig stoff. I tillegg kommer lagring på bensinstasjonene.

Der er flere store lager av farlig stoff i regionen. De største lagrene er plassert i god avstand fra annen bebyggelse, slik at sannsynligheten for at en brann/eksplosjon i disse anleggene fører til skade på annen eiendom anses som liten.

Større lagring av farlig stoff er meldepliktig til DSB. Dette gjelder for eksempel mengder over 400 liter gass.

I den private husholdningen er det en trend at det benyttes mer og mer gass til koking, peis og lignende. Slik lagring er en utfordring for innsatspersonellet ved brann. Det er ingen krav til merking av denne type lagring. Lagring av brannfarlig gass er ikke tillatt i kjeller. Det er derfor spesiell oppmerksomhet rundt gassdrevne biler i parkeringskjellere.

Det ikke er tillatt med oppbevaring av brannfarlig gass i serveringssted, i overnattingssted eller i forsamlingslokale med mindre særskilte tiltak er iverksatt. Gass for disse virksomheter kan for eksempel plasseres i utendørs skap med fast røropplegg.

NTNU og St. Olavs lagrer og bruker kjemiske og biologiske forbindelser for laboratorievirksomhet og forsøk, som kan gi alvorlige konsekvenser om de kommer på avveie.

15 Forskrift om transport av farlig gods på veg og jernbane
16 Forskriftene for transport av farlig gods på sjø
17 International Civil Aviation Organization
3.1.7 Lagring av eksplosiver
Eksplosiver er underlagt strenge bestemmelser, med hensyn til lagring, kompetanse og internkontroll. Uhell skjer særlig i forbindelse med bruk av eksplosiver. Lagring av eksplosiver skal søkes DSB.

I forbindelse med salg av fyrverkeri kan det i perioden 1. desember til 31. januar hvert år lokalt bli lagret inntil 250 kg netto eksplosiver i containere som er utformet spesielt for formålet. Det er i denne perioden flere containere med fyrverkeri som lagres i vårt område. Det gjennomføres kontroller med disse utsalgsstedene/lagrene.

3.1.8 Spesielle samfunnsviktige funksjoner – brann og sårbarhet
Av samfunnsviktige områder kan nevnes:
- Trondheim havneområde
- Kraftstasjoner, trafostasjoner, telesentraler og drikkevannsforsyning
- 110-, 112- og 113-sentralene
- Brannstasjonene
- Slokkevann
- Politistasjoner
- Jernbanestasjoner
- Sykehus
- Sentrale offentlige arkiv

Sårbarhet måles i *objektets* evne til å fungere i en krisesituasjon (her brann). I forbindelse med vurdering av konsekvens ved en ønsket hendelse må også sårbarheten til funksjonen som er knyttet til bygningen/området, vurderes.

Sårbarheten kan være omfattende å vurdere, og inkluderer mange aktører. Brann- og redningstjenesten deltar i kommunenes og Fylkesmannens ROS- og beredskapsarbeid, hvor det blant annet øves på svikt i samfunnskritiske funksjoner. Sårbarhet i forhold til samfunnskritiske funksjoner er et viktig tema i Fylkes-ROS og kommunenes ROS, men det er foretatt avgrensinger opp mot vurdering av sårbarhet i denne analysen.

Brann- og redningstjenesten fører tilsyn med at det brannforebyggende arbeidet i bygningene er tilfredsstillende. De som er ansvarlig for driften av sårbare anlegg skal vurdere risiko og sårbarhet, iverksetter forebyggende tiltak og sørger for beredskapsplaner. Det vil si at kraftselskapene må vurdere el-forsyning og så videre.

I det etterfølgende vil likevel noen av områdene bli omtalt. De fleste bygningene inngår også som en del av kartleggingen av den generelle tilstanden i bygninger.

Trondheim havneområde
Trondheim Havn disponerer store områder fra Ila i vest til Ladehammeren i øst. I tillegg kommer fergeområdet på Flakk. De fleste av de større bygningene i havneområdet er registrert som særskilte brannobjekter og beskrivelsen av disse bygningene kommer inn under kartleggingen av industri, håndverk, kontor med mer. Drukningsulykker er omtalt under beskrivelse av ulykker i neste kapittel. Transport av farlig gods er beskrevet tidligere.

Kraftstasjoner, trafostasjoner, telesentraler og drikkevannsforsyning

I regionen er det flere store kraftanlegg og trafostasjoner. Ansvaret for drift og vedlikehold ivaretas av eier. Det føres tilsyn i denne type anlegg og vårt inntrykk er at de krav som settes i henhold til forebyggendeforskriften for disse anleggene, blir ivaretatt. Det er installert slokkesystem i flere anlegg og det er også installert brannalarmanlegg.

Det synes som om kravene i brann- og eksplosjonsvernloven er ivaretatt også for telesentraler og anlegg for drikkevannsforsyning. Det er foretatt oppgradering i bygningene med oppgradering av brannskiller (tetting). Flere av anleggene er dekket med automatisk brannvarslingsanlegg med direkte varsel til 110-sentralen.

110-, 112- og 113-sentralene
Kommunikasjonssvikt ved 110-, 112- og 113-sentralene vil være kritisk, men sannsynligheten anses som liten. Alle sentralene i Trondheim er nye.

Sør-Trøndelag 110-sentral er etablert ved den nye hovedbrannstasjonen i Trondheim og har en egen ROS.

Brannstasjoner

Brannstasjonene med utstyr er en viktig del av kommunenes beredskap og en brann her, kan derfor gå utover beredskapen. Brannstasjonene i Trondheim er utstyrt med brannalarmanlegg, hovedstasjonen er i tillegg sprinklet og avstanden mellom stasjonene er forholdsvis kort. Stasjonene i Trondheim er bygget i henhold til nyere forskrifter og risikoen anses derfor å være på et akseptabelt nivå ved brann.

På grunn av den lange kjøreveien mellom stasjonene utenfor Trondheim, vil beredskapen bli betydelig svekket dersom en av disse stasjonene settes ut av drift.

Slokkevann

Dersom slokkevannsforsyningen ikke er tilstrekkelig, vil dette redusere branmannskapets slokkeevne ved en brann. Settes vannforsyningsanlegg i området midlertidig ut av drift der vannforsyningen skal dekke vann til slokking, vil dette ha stor betydning for slokking av en eventuell brann i tidsrommet dette skjer. Tankkapasiteten på branbilene er begrenset og det er kun fåtall tankbiler i beredskap i regionen. I brannvernregionen er det få muligheter til alternativ vannforsyning dersom vannverkene ikke fungerer.

Politistasjoner

Hovedstasjonen for Sør-Trøndelag politidistrikt ligger i Trondheim. Stasjonen er bygget i henhold til nyere forskrifter og risikoen anses derfor å være på et akseptabelt nivå.

Jernbanestasjoner

Muligheten for skade anses normal. Sentralbanestasjonen i Trondheim er oppgradert med nybygg og restaurering av bestående bygninger.

Vognene i tog står tett og en brann vil lett kunne spre seg dersom den ikke blir slokket i tide. Brann i vogner på tog kan medføre stopp i bruk av strekningen i en periode. Planlagt utbygging i området kan gi utfordringer ved brannslokking.

Sykehus

St. Olavs Hospital i Trondheim består hovedsakelig av nye bygg. Disse er bygget i henhold til nyere forskrifter og skal derfor være bygget i henhold til dagens krav. De andre sykehusene i regionen har en blanding mellom nye og eldre bygg.

Sentrale offentlige arkiv
3.2 Analyse av risiko

Det er viktig å merke seg at risikoen er sammenstilt ut i fra en helhetsvurdering i hele regionen. De betyr at risikoen ikke nødvendigvis er tilsvarende for den enkelte kommune. For å se risikoen i den enkelte kommune vises det til tilleggsrapportene. Analyse av bygninger er mer detaljerte i Trondheim, da bygningstyper lettere kan deles opp og mengden innenfor en bygningstype er større enn i små kommuner. I de mindre kommunene er derfor noen typer bygninger/områder slått sammen, mens enkelte typer bygninger/områder er trukket fram, spesielt der hvor risikoen er av betydning i denne sammenhengen. I Trondheim er det arbeidet lenger med systematiske ROS-analysen enn i de øvrige kommunene.

Sårbarhet er ikke tatt med spesielt i selve risikoanalysen, da så å si alle områdene som er listet opp, kommer inn under de kategoriene som allerede er beskrevet i kapittel 3.1.

I tilleggsrapportene for de enkelte kommuner kommer det fram hvilke bygningstyper som er beskrevet for hver kommune.

I vurdering av bygningstyper/områder er det skilt mellom hva som antas sannsynlig kan skje (oftere enn 50 år) og hendelser som antas lite sannsynlig kan skje (sjeldnere enn 50 år).
| Sannsynlighet | Sjeldnere enn 50 år

(50 år < x < ∞) | Sannsynlig

10 år <x< 50 år | Meget sannsynlig

1 år <x< 10 år | Svært sannsynlig

x < 1 år |

Katastrofal

- Fredet bebyggelse
- Transport av farlig gods på veg og jernbane
- Samfunnsviktige funksjoner
- Lagring av farlig stoff og eksplosiver
- Tunnel
- Sykehus/ sykehjem
- Forsamlingslokaler
- Salgslokaler
- Overnattingssteder

Meget kritisk

- Barnehage, skole og universitet
- Underjordisk garasje
- Omsorgsboliger
- Midlertidig arrangement

Kritisk

- Industri og lager
- Brann i bygning, inkl. landbruksbygg

Farlig

- Skog
- Boliger

Konsekvens

Tabell 7: Risikomatrise for branner
Konklusjoner
Risikomatrisen viser at dette sannsynlig kan skje:

- en brann i fredet og verneverdig bebyggelse og tett trehusbebyggelse kan føre til store materielle ødeleggelser i samme brann, totalskade, mens en hendelse i 1890-gårder kan føre til tap av flere enn 4 menneskeliv
- en brann i industri og lager kan gi skade i 100 millioner kroners klassen og/eller store konsekvenser for miljøet. For brann i bygninger generelt, inklusive landsbruksbygg, kan det medføre tap av 2-4 menneskeliv og/eller gi skader i 100 millioner kroners klassen. Når det gjelder landbruksbygg kan det gå tapt inntil 250 dyreliv i samme brann.

Det utelukkes ikke tap av et menneskeliv hvert år i bolig i en og samme brann (risikoen er betydelig).

Risikomatrisen viser videre branner som kan skje, men med lavere sannsynlighet:

- en brann i fredet bebyggelse og samfunnsviktige funksjoner kan få katastrofal konsekvens - totalskade i denne type bygg/område. En brann i forbindelse med transport av farlig gods på vei og jernbane, lagring av farlig stoff og eksplosiver, forsamlingslokaler og overnattingssteder kan medføre tap av flere enn 4 menneskeliv. Videre kan en brann i tunnel, på et sykehus/sykehjem og i salgslokaler medføre katastrofal konsekvens og flere enn 4 tap av menneskeliv.
- en brann i barnehage, skole og universitet kan forårsake materielltap i 100 millioner kroners klassen. Ved brann i en underjordisk garasje, i en omsorgs bolig og ved midlertidige arrangement kan det gå tapt 2-4 menneskeliv.

Hendelser i flere av bygningstypene antas lite sannsynlig kan skje, men dersom de skjer, vil de kunne gi en katastrofal konsekvens, for eksempel i særskilte brannobjekt.
4. Analyse av akutte ulykker

Dagligdags hendelser er omtalt i kapittel 2.2. Dette er statistikk over utrykninger som brann- og redningstjenesten har blitt utkalt til de seneste årene. I kapittel 4.1 blir det gitt et sammendrag av akutte ulykker som brann- og redningstjenesten kan se for seg, gitt i tilleggsrapportene. I kapittel 4.2 gjennomføres en grov analyse av risikoen for akutte ulykker i regionen. Resultatet er illustrert i tabell 8 Risikomatrice for akutte ulykker.

4.1 Akutte ulykker – beskrivelse

I tilleggsrapportene er det foretatt en beskrivelse av ulykker i kommunene ut ifra det grunnlagsmateriale brann- og redningstjenesten har kunnet skaffe fra aktuelle enheter/etater innen hver av ulykkestypene.

Det er valgt å inndele ulykker i følgende kategorier, det vil si ulykker uten at det oppstår brann:

- Ulykker med farlig gods - akutt forurensning
- Ulykker relatert til elv, vann og sjø
- Ulykker i personbefordring - offentlig transport, privattrafikk
- Flom i elv og sjø, dambrudd, jord- og snøskred, vind og liknende
- Arbeidsulykker, fritidsulykker, hjemmeulykker
- Selvmord

Nedenfor følger en beskrivelse av de valgte ulykkeskategoriene:

4.1.1 Ulykker med farlig gods - akutt forurensning

I dagens samfunn er det en økende bruk av forskjellige farlige stoffer som ved uhell kan medføre skade på miljø, mennesker og dyr. Slike stoffer som kan medføre fare, benyttes blant annet innenfor ulike typer av industri. Dette kan være giftige stoffer eller etsende væsker, eller andre stoffer. En blanding av stoff med vann kan ha helt andre egenskaper enn de opprinnelige stoffene, på samme måte som en kombinasjon av flere ulike stoffer.

Ulykker på vei der kjøretøyer med farlig gods er involvert, kan gi forholdsvis store konsekvenser. Spesielt alvorlig kan det bli dersom dette i tillegg skjer inne i en tunnel. Det har forekommet utslipp av oljeprodukter i regionen både på land, i sjø og drikkevann. Det har også vært utslipp fra nedgravde oljetanker til terreng og til avløpsnett. Videre er det fare for akutt forurensning fra lager/transport av kjemikalier, spesielt i Trondheim.

Landbruket lagrer og benytter giftige stoffer som ammoniakk, maursyre og plantevernmidler. Det foreligger etter vår kjennskap ingen opplysninger om mange personskader verken lokalt eller i Norge etter utslipp i anlegg der det lagres ammoniakk, med det finnes eksempler i Norge på at utslipp fra lagret ammoniakk har medført omfattende evakueringer.
Klor er et stoff som ved lekkasje kan gi betydelige skader, men benyttes i mindre grad i dag.

4.1.2 Ulykker relatert til elv, vann og sjø

Det er kjent at vind og strømforholdene i Trondheimsfjorden er vanskelige. Det opplyses at situasjonene ved uhell som motorstopp/lekkasjer og liknende, kunne ha utviklet seg til å bli livstruende dersom ikke assistanse hadde kommet raskt til stede.

Havneområdet i Trondheim har mange anløp av større og mindre skip, og det er en økende trend med boliger og aktiviteter (fritid, fornøyelser og arbeid) nær kanalene og havneområdene.

Det er også økende fritidsaktiviteter i elvene Driva og Orkla. Dette er med på å øke risikoen for ulykker.

Det er også en betydelig økning av trafikken med fritidsbåter, kano og kajakk i sjø, elv og vann i regionen. Dette medfører en rekke større og mindre uhell og ulykker. Det kan også skje drukningsulykker i forbindelse med festivaler og andre arrangementer.

TBRT har dykkertjeneste, sjøsprøyte og hurtiggående lettbåter (for overflateredning). De fleste personer som blir reddet fra drukning er reddet ved hjelp av overflateredning. Dette er hovedsakelig lokaliseret i Trondheim.

4.1.3 Ulykker i persontransport

Selv om analysene viser at sannsynligheten er lav, vil konsekvensen kunne være høy ved ulykker/viljestyrte handlinger innenfor offentlig transport, eksempelvis flyhavari og flyulykker, jernbaneulykker og liknende.

Nesten daglig skjer det større og mindre uhell og ulykker i vårt område. Statistikken viser at brann- og redningstjenesten blir utkalt til flere trafikkulykker i uka. I en del av hendelsene vil
arbeidet bestå i sikring av skadestedet mot brann og akutt forurensning, samt avsperring av skadestedet. I en rekke av hendelsene vil arbeidet dreie seg om å frigjøre forulykkede og skadde. Ut fra statistikken er det behov for innsatsstyrker med god kompetanse som er i stand til å takle trafikkulykker.

Brann- og redningstjenesten har utstyr og kompetanse i førstehjelp og i bruk av hjertestarter. I kommunene utenfor Trondheim er det stort sett brannvesenet som er først på et skadested. Det kan i perioder ta lang tid til politi og/eller ambulanse ankommer. Dette medfører behov for en mer spesialisert kompetanse og utstyr i forhold til trafikkulykker og andre ulykker.

Brann- og redningstjenestens utrykninger medfører i seg selv en risiko knyttet til trafikkulykker. Det bør derfor vurderes tiltak for å redusere mengden unødvendig utrykningskjøring som kommer av det høye antallet såkalte unødige alarmer (se dagligdagse hendelser kapittel 2.2).

4.1.4 Flom i elv og sjø, dambrudd, jord- og snøskred, vind og liknende

Potensielle skredfarlige kvikkleiresoner i regionen er kartlagt og klassifisert med hensyn på faregrad, konsekvens og risiko, ut fra NGI rapport18. Det gjøres oppmerksom på at det er angitt en relativ rangering av fareklassene. Det er også gjort en vurdering av undersjøiske skred i havna, ras på vei, utglidning i byggegrop med mere. Det konkluderes med at det er svært lite sannsynlig at det skjer større kvikkleireskred.

I denne rapporten er det gitt en vurdering av sannsynlighet og konsekvens for forskjellige rastyper som kan tenkes, og tilsvarende for skader innenfor vann og avløp, samt dambrudd. Det presiseres at følgene for samfunnet grunnet skade på vann- og avløpssystemet (følgene av svikten), ikke er med i undersøkelsen. Det er sannsynlig at det kan skje større ras på vei og ras i forbindelse med massedeponi og liknende. Erfaring viser også at det er sannsynlig at det skjer mindre skader i forbindelse med bygging og mindre fyllinger.

Det finnes kommuner i regionen som er utsatt med hensyn på snøras. Behov for beredskapmessige forhold ved slike hendelser må vurderes.

18 NGI rapport 2001008-6 Program for økt sikkerhet mot leirskred. Trondheim kommune
Sannsynligheten for dambrudd er liten, men dersom det skulle skje, ville det kunne få store konsekvenser for nedslagsområdet både for personer og materielle verdier. Risikoen for jord-, stein- og leirras øker i forbindelse med store nedbørs mengder (ekstremvær).

4.1.5 Arbeidsulykker, fritidsulykker, hjemmeulykker
Erfaringsmessig er det flere ulykker hvert år der det er behov for redningstjeneste. Dette kan for eksempel være klemstader i forbindelse med arbeid og fritid ved bruk av for eksempel landbruksredskaper, trefelling og ved bruk av anleggsmaskiner.

Brann- og redningstjenesten har tauredningsgruppe for redning i høyder, lokaliseret i Trondheim. I tillegg finnes privat tauredningsgruppe i Oppdal, som ikke er ansatt i brann- og redningstjenesten. Ressurser derfra kan rekvireres.

Arbeidsulykker, hjemmeulykker og lignende kan inntreffe, men det er sjelden at mer enn en person blir skadet/går tapt i denne type ulykker.

4.1.6 Selvmord
I forbindelse med at personer ønsker å ta sitt eget liv/har tatt sitt eget liv, blir brann- og redningstjenesten utkalt. Oppdragene kan være av forebyggende art/i forhandlingsøyemed eller bistand etter at hendelsen er en realitet.

4.2 Analyse – akutte ulykker
I risikomatriisen nedenfor er resultatene etter vurdering av sannsynlighet og konsekvens for akutte ulykker sammenfattet. I vurdering av akutte er det skilt mellom hva som antas sannsynlig kan skje (oftere enn hvert 50. år) og hendelser som lite sannsynlig kan skje (sjeldnere enn hvert 50. år).

Det er viktig å merke seg at risikoen blir sammenstilt ut i fra en helhetsvurdering i regionen. De betyr at risikoen ikke nødvendigvis er tilsvarande for den enkelte kommune. For å se risikoen i den enkelte kommune vises det til tilleggsrapportene.

I risikomatriisen i tabell 8 vises en analyse av de kjente risikoene.
Risiko- og sårbarhetsanalyse
Trondheim, Malvik, Klæbu, Rennebu, Oppdal, Rissa og Leksvik
Trøndelag brann- og redningstjeneste IKS

<table>
<thead>
<tr>
<th>Sannsynlighet (år)</th>
<th>Sjeldnere enn 50 år ((50 \text{ år} < x < \infty))</th>
<th>Sannsynlig (50 \text{ år} > x > 10 \text{ år})</th>
<th>Meget sannsynlig (10 \text{ år} > x > 1 \text{ år})</th>
<th>Svært sannsynlig (1 \text{ år} > x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Konsekvens</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Katastrofal</td>
<td>Større kvikkleireskred</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Snøras</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Større havari eller flyulykker</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stor ulykke med mange omkomne offentlig trafikk</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dambrudd</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meget kritisk</td>
<td>Forurensning grunnvann</td>
<td>Farlig gods</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kritisk</td>
<td>Fritids-/ arbeidssulykker</td>
<td>Ras på veg</td>
<td>Trafikkulykker</td>
<td>Personen i elv eller kanal</td>
</tr>
<tr>
<td>Farlig</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabell 8: Risikomatrise for akutte ulykker

Konklusjoner

De aller største risikoene innenfor ulykker i brannvernregionen er trafikkulykker og personer i elv og kanal. Det antas som at slike ulykker kan medføre tap av person i samme ulykke hvert år.

Leirskred kan forårsake store konsekvenser, men opptrer av statistikk/erfaring svært sjelden. Det antas at et større leirras lite sannsynlig kan skje i flere av kommunene i regionen. Videre er også snøras vurdert til ulykker hvor det kan medføre tap av flere enn 4 menneskeliv, men da som lite sannsynlig at kan skje. I tillegg finner vi større havari, store ulykker med mange omkomne i offentlig trafikk og dambrudd i denne kategorien. Disse vil i tillegg kunne medføre store materielle ødeleggelselser (tap av mer enn 100 millioner kr.). Ulykker som også
kan tenkes lite sannsynlig kan skje, er forurensning av grunnvann. Slik forurensning kan få store konsekvenser dersom det ikke blir gjort tiltak for å redusere risikoen.

Det er sannsynlig at det antas å skje ulykker der farlig gods er involvert. Dette kan medføre store konsekvenser for miljøet. Innenfor samme tidsperioden kan det skje fritids- og arbeidsulykker med en omkommet i en og samme ulykke.

I alle kommunene er det en risiko for at veier raser ut. Det er sannsynlig at det kan skje ulykker der et menneskeliv går tapt i et og samme ras.

Brann- og redningstjenesten blir utkalt i forbindelse med selvmord flere ganger hvert år.
5. Drøfting og evaluering av analysen

5.1 Gyldigheten til resultatene - Usikkerheter

5.1.1 Arbeidet med analysen

5.1.2 Datamateriale og usikkerhet

Kompleksiteten til brannfaget er en av grunnene til at analysearbeidet har vært utfordrende, da brannsikkerheten i en bygning avhenger både av nivå på de tekniske og organisatoriske brannsikringstiltakene i bygningen, samt innsattstid og vannforsyning. De tekniske og organisatoriske brannsikringstiltakene er forhold som ikke er statiske, men som forandrer seg raskt. Det er derfor ikke sikkert at brann- og redningstjenesten til enhver tid har fullstendig oversikt over situasjonen, selv i de bygninger hvor det utføres tilsyn hvert år. Brann tekniske installasjoner som for eksempel sprinkleranlegg og brannalarmanlegg er avhengig av kontroll, ettersyn og vedlikehold for å virke som forutsatt. Dersom de nevnte installasjonene ikke fungerer ved en eventuell brann vil det kunne få katastrofale konsekvenser, selv om bygningen er bygget i henhold til dagens byggeforskrifter. Svikt i brann tekniske installasjoner kan bety at brannsikkerheten har et dårligere nivå enn minimumskravene gitt i forskriftene. I tillegg vil en brann som har arrestet i et usprinklet område (for eksempel et nabobygg) kunne føre til at slokkanlegget i et annet bygg/branncelle ikke kan kontrollere brannen dersom den sprer seg. I henhold til Norsk Standard skal analyser av brannførløp både omfatte
hendelseskjeder der konsekvensreduserende tiltak virker som forutsatt, og kjeder der disse svikter. I den fasen av ROS-analysen hvor de verste hendelsene er anslått, er det forutsatt at tekniske tiltak, som for eksempel sprinkler, kan svikte. Med bakgrunn i at de organisatoriske tiltakene forander seg over tid er det imidlertid vanskelig å fastslå sannsynlighet for at en hendelse med største konsekvens inntrerer.

Ulykkesstatistikken for en rekke ulykkestyper har svært varierende kvalitet. Trafikkulykker står for et stort antall av de akutte ulykkene i vårt område. Innenfor trafikkområdet er det foretatt et omfattende og grundig arbeid med registrering av antall ulykker, registrering av konsekvensene av ulykkene, samt risiko for ulykker på ulike veistrekninger og områder. På andre områder der det kan skje ulykker, er underlagsmaterialet spinkelt med mangelfull statistikk, skadefrekvens og konsekvensvurderinger. Innenfor de områdene der underlaget er mangelfyllt, har det derfor vært nødvendig å ta utgangspunkt i det som finnes av erfaring og kunnskap lokalt. Ut av dette forstår man at det er vanskeligere å angi presise anslag for andre ulykker enn for eksempel trafikkulykker, selv om risikoen ved andre ulykker kan være like alvorlig som risikoen ved trafikkulykker.

At en kommune ikke har registrert hendelser betyr ikke at det ikke har skjedd hendelser. At det ikke har skjedd hendelser betyr ikke at hendelsen ikke kan tenkes å skje.

Analysemetodikken gir kun et grovt bilde av den kvalitative risikoen i regionen. Metoden er videre ikke egnet til å kvantifisere risikoen for de ulike hendelsene. I denne forholdsvis grove analysemetodikken blir risikoene/hendelsene presentert med den verste konsekvensen. En ønsket hendelse vil kunne ha et helt spekter av mulige konsekvenser, med forskjellig sannsynlighet. Dette aspektet kommer ikke frem når man presenterer risikoen i risikomatrisen som gjort her, men for analysens formål anses det som et hensiktsmessig valg å gjøre.

Statistikkgrunnlag for antall studenter er mangelfullt fra SSB. Dette kan gi noe usikkerhet, men det antas at antallet ikke er langt fra sannheten. Det vi helt sikkert vet, er at Trondheim er en studentby med mange tusen studenter som ofte bor i den eldre tette trehusbebyggelsen i byen.

Statistikkgrunnlaget for ulykkestyper og omkomne fra DSB er også av varierende kvalitet for de årene før vedlagte statistikk, derfor er kun de siste årene medtatt. Det er mangelfulle opplysninger fra kommunene som gjør at DSB sin statistikk ikke er god nok, samt endring i statistikken.

5.1.3 Metode
Metoden som er brukt ved vurdering av risiko, anses å være tilstrekkelig anerkjent til å gi resultatene tilfredsstillende pålitelighet. Metoden bygger på standarder som omhandler risikoanalyser, både spesifikt innenfor fagområdet brann og standarder som omhandler
risikoanalyser på generell basis. Etter prosjektgruppens kjennskap, har flere brannvesen i Norge utført ROS-analyse etter tilsvarende metode.

5.1.4 Nøyaktighet
Detaljeringgraden i analysen er til dels høy, hvilket fremgår av tilleggsrapportene. Særlig i forbindelse med kartlegging av tilstandene i bygninger i regionen, samt ved beskrivelse av hendelser, er store ressurser lagt ned. Senere kan det likevel bli behov for ytterligere analysearbeid for å gå i dybden innenfor de enkelte grupperingene. Eksempel på dette er gruppen “industri, garasjeanlegg og lager”. Ved vurdering av hvilke tiltak som er egnet for å redusere risikoen, vil det være behov for å splitte opp gruppen i de forskjellige objektstypene og øke detaljeringgraden. Det kan også senere bli behov for gjennomføring av årsaksanalyser som beskriver hendelseskrøyer innenfor de forskjellige objektstypene.

5.2 Tendenser i samfunnet – Risikopåvirkende forhold
5.2.1 Tilstanden i byggebransjen
SINTEF har utført en undersøkelse på oppdrag fra kommunal- og regionaldepartementet som viser at kvaliteten til dagens byggearbeider er kritikkverdig. Revideringen av plan- og bygningsloven i 1997 har ført til at både prosjektering og utførelse kan være mangelfull. De tilsyn som brann- og redningstjenesten har utført i samarbeid med lokal bygningsmyndighet i forbindelse med nybygg eller ombygging, bekrefter SINTEF’s konklusjoner; lovens krav blir ikke alltid oppfylt. Dette er bekymringsfullt med tanke på at det ikke lenger kan forventes at brannsikkerheten er ivaretatt i nye bygninger. Samtidig er det vanskeligere for brann- og redningstjenesten å vurdere det bygningsmessige brannvernet i byggverk utført etter den reviderte plan- og bygningsloven, da prosjektering i dag sjelden følger anerkjente løsninger (såkalte ”preaksepterte”) løsninger.

Det kan nevnes at det er nye tekniske forskrifter for bygg fra 01.07.2010, TEK 10. En stor del av løsningene innenfor dagens branntekniske prosjektering baserer seg på såkalte aktive brannsikringstiltak som for eksempel automatisk slokkeanlegg og brannalarmanlegg. Dette er i utgangspunktet gode tiltak dersom de blir håndtert riktig. Svakheden med dette er at løsningene ikke er robuste over tid, da kontroll, vedlikehold og ettersyn av de branntekniske installasjonene er avgjørende for brannsikkerheten i bygget. Erfaring viser også at det stilles større og større krav til brannsentralen; stadig flere branntekniske tiltak og funksjoner styres fra brannsentralen. Dette understreker at det er svært viktig med kontroller, vedlikehold og ettersyn av de branntekniske installasjonene for å holde brannsikkerheten på et tilfredsstillende nivå.

I forbindelse med høringsuttalelser i plansaker viser det seg at en ny byggetrend for å utnytte området mest mulig, er at boligområder bygges over en sammenhengende stor bygning. Dette medfører en stor utfordring i forhold til brann- og redningstjenestens adkomstforhold og

19 SINTEF RAPPORT Ivaretakelse av branntekniske krav i byggeprosessen, datert 20.06.2004

5.2.2 Endret bomønster

Bomønsteret i samfunnet er i ferd med å forandres ved at personer som tidligere ble plassert på institusjon nå bor hjemme lenger og i større grad enn før. Reformene gjelder blant annet eldre personer og andre personer med nedsatt funksjonsnevn. Felles for disse gruppene er at de kan ha behov for assistert rømning ved brann. Det er flere eksempler på at endringene får konsekvenser for brannsikkerheten, der eldre står for en økende og en stor andel av de omkomne i branner. Flere av personene hadde trengt assistanse ved rømning. I tillegg til de nye boligformene som kommunen nå tilbyr, blant annet ”omsorgsboliger” og ”trygdeboliger”, markedsfører private bygningseiendommer som ”seniorboliger” og lignende. Boligene er tilrettelagt med heis og terskelfrie dører slik at beboeren skal kunne bo i leiligheten hele livet, men det er sjelden iverksatt tilfredsstillende brannsikringstiltak.

Statistikken og prognosene viser at vi stadig blir flere eldre og andelen eldre vil øke vesentlig i de kommende årene.

Den offentlige utredningen Trygg hjemme tar for seg brannsikkerheten hos risikoutsatte grupper i samfunnet. Risikogrupper er personer som anses å være særlig utsatt for brann. NOU Trygg hjemme²⁰ antyder at hjemmebesøk hos risikoutsatte grupper er et tiltak som må inkluderes i fremtidens brannvern og vil være et nasjonalt satsningsområde i årene framover. I utredningen ønskes en dreining av virkemidler i retning skadeforebygging, i tillegg til de eksisterende virkemidlene. Statistikken både nasjonalt og lokalt viser at antall eldre som omkommer i brann er overrepresentert, til tross for at de representerer en lavere befolkningsandel enn andre grupper. Statistikken viser også at de fleste som omkommer, dør i egen bolig. Det kommer ikke fram i statistikkene hvilken tilstand personene omkommer i brann, innenfor seg i.

Det har vært utført et prosjekt ”Trygg hjemme” i brann- og redningstjenesten med tanke på å oppnå en bedre brannsikkerhet for disse gruppene. Risikoutsatte grupper er inndelt i disse hovedgruppene:

- Målgruppe 1: Eldre hjemmeboende over 75 år.
- Målgruppe 2: Andre hjemmeboende med nedsatt funksjonsevne.
- Målgruppe 3: Arbeidsinnvandrere og studenter i bokollektiv.

Prosjektgruppen har etter utredning og utprøving kommet fram til at brannvernarbeidet overfor risikoutsatte grupper må skje i samarbeid med andre aktører, herunder kommunens hjemmetjeneste, hjemmesykepleie og ergoterapitjeneste, lokalt el-tilsyn, politiet, lege,

²⁰ NOU 2012:4 Trygg hjemme, Brannsikkerhet for utsatte grupper

5.2.3 Arbeidsinnvandrere

For å dekke etterspørselen av arbeidskraft blir personer fra utlandet, hovedsakelig Øst-Europa, ofte en arbeidsressurs i Norge. Erfaring viser at mange av disse arbeidsinnvandrerne bor tett i brakker og i tett trehusbebyggelse der brannsikkerheten ikke alltid er ivaretatt.

5.2.4 Studenter og hyblifisering

Ved at leiligheter for en familie omgjøres, gjerne uten bruk av fagarbeidere, eller leies ut til studenter, vil det oppstå en del endringer som boligen i utgangspunktet ikke er "dimensjonert for". Det være seg det elektriske anlegget som får en helt annen bruk og dermed økt belastning. En del studenter og andre unge leietakere medfører også en økende grad av unormal døgnrytme og bruk av rusmidler, som igjen kan medføre større risiko for brann.
Det er gjennomført flere befaringer/tilsyn i trehusområdene, systematisk, i samarbeid med bygningsmyndigheten og etter bekymringsmeldinger fra publikum. Befaringene/tilsynene har avdekket flere ulovlige forhold og de har også vist at det er enkelte profesjonelle uleiere som leier ut hybler med til dels betydelige mangler.

For en dypere studie omkring studenters boforhold vises det blant annet til:

- Prosjektet Studentbosetting –hyblifisering, arkivsak 06/3069, gjennomført av boligenheten, by- og arealplankontoret og Studentsamskipnaden i Trondheim for å fremskaffe bedre kunnskap om studenters boforhold.
- Prosjektet Å forebygge brann i tett trehusbebyggelse – med fokus på målgruppen, prosjekt høsten 2006 utført av studentene Lena E. Kristoffersen og Thea Sofie Melhuus Højem (NTNU).
- Rapport Stadfesting av studenters bosetting i Trondheim kommune per juni 2005 utarbeidet av Asplan Viak AS.

5.2.5 Hytte/fritidsvirksomhet
I flere av kommunene i regionen er det stor hytte- og fritidsvirksomhet. Dette fører til at det kan være en mangedobling av antall personer i forhold til innbyggertallet i disse kommunene i perioder av året. Videre medfører dette økt sannsynlighet for at brann og ulykker kan bli store.

Sesongvariasjoner i innbyggertall er derfor en utfordring da det i store feriehøytider er flere mennesker og høyere aktivitet i et område enn det brannvesenet er dimensjonert for. Det sammen gjelder for store arrangement.

Risikoen knyttet til omfattende hyttebranner øker ved at eksisterende hyttefelt fortettes og nye hyttefelt oppføres med liten avstand mellom hyttene. Adkomstmuligheten for brannvesenetets tunge kjøretøyer er utfordrende og slokkevannforsyningen er ofte mangelfull. Generelt er andelen pipebranner høyere i hytter enn i vanlige boliger.

Redningsaksjoner i fjell og skogmark er stadig en utfordring, blant annet på grunn av at flere søker seg til ekstremsportaktiviteter.

5.2.6 Kullgrill
Branner på storkjøkken kan få uakseptabelt stor konsekvens dersom det ikke er iverksatt nødvendige forebyggende tiltak. Det har vært flere tilfeller i Trøndelag hvor brannen har spridd seg raskt via ventilasjonssystemet. Brannen er da vanskelig å kontrollere og kan ta seg til andre deler av bygningen og andre bygninger innen kort tid.
I forbindelse med tilsyn, er det den senere tid funnet restaurantkjøkken hvor det er installert kullovner.

Trøndelag brann- og redningstjeneste IKS har meldt inn saken til DiBk (Direktoratet for byggkvalitet) som arbeider med saken.

5.2.7 Universell utforming
Det legges i større grad til rette for at personer med alle slags funksjonshemminger på egen hånd har tilgjengelighet til samtlige bygninger i samfunnet, blant annet ved at det i ny byggeforskrift, TEK10, er stilt krav om universell utforming. Trondheim kommune er valgt ut som foregangskommune i Norge for å sørge for at det legges til rette for funksjonshemmede. Det er imidlertid en utfordring å sørge for at det tilrettelegges for rømning av de funksjonshemmede personene ved brann.

5.2.8 Klimarelaterte utfordringer
I den siste tiden har det vært stort fokus på endringen i klimaet og den globale oppvarmingen. Utviklingen vil sannsynligvis kunne føre til andre og flere utfordringer i årene framover som for eksempel mer ekstremvær; hyppigere hetebølger, kraftige stormer, flom, leirskred og tørke. Endret klima med tørke kan føre til at omgivelsene blir mer sårbare for brann i større deler av året, for eksempel med økt fare for gress- og lyngbrann. Vinterhalvåret 2014 ga oss en "smakebit" på hva vi kan vente oss i årene framover. Det samme kan vi si om stormene som har vært/er.

Videre kan klimarelaterte ulykker kunne medføre kommunikasjons- og evakueringssproblemer, herunder brudd i samferdsel. Denne type hendelser er omtalt i ROS-analysen for Trøndelagsfylkene.
6. Veien videre
I ROS-analysen er det ikke omtalt hvilke konkrete tiltak som bør iverksettes for å redusere risikoen. Det er heller ikke tatt stilling til om tiltakene bør være av forebyggende og/eller beredskapsmessig karakter. I arbeidet med å finne egne tiltak for å redusere risikoen, kan det blant annet være behov for å se nærmere på årsaker innenfor de ulike hendelsene ved å utføre årsaksanalyser.

6.1 Oppfølging av risiko- og sårbarhetsanalysen
ROS-analysen danner grunnlag for å beskrive risiko- og sårbarhet i brann- og redningstjenesten og derav foreta vurderinger i forhold til disse.

Nedenfor omtales viktige områder for det videre arbeidet i brann- og redningstjenesten.

Dimensjonering, organisering og utrustning
Med bakgrunn i det som er avdekket i denne analysen, må følgende minst vurderes:
- Hvilke hendelser skal brann- og redningstjenesten kunne håndtere
- Hensynsmessig organisering
- Dimensjonering av brann- og redningstjenesten for å ivareta både forebyggende aktivitet og beredskap på et akseptabelt nivå
- Ved dimensjonering av den forebyggende aktiviteten må det kompenseres for etterslep fra tidligere år, innsparingar og andre forventede oppgaver
- Ved dimensjonering av beredskapen må det vurderes en styrking i tidsperioder når stor andel av mannskapene i deltidskorpset er fraværende og for håndtering av sesongvariasjoner i innbyggertallet
- Utstyrssbehov ut fra risikobildet
- Slokkevannskapasitet
- Innsatsstider
- Behov for flere objektsplaner

Strategiplan for beredskapsarbeid
Det må utarbeides en strategiplan for bedreskapsarbeid i Trøndelag brann- og redningstjeneste IKS.

Strategiplan for forebyggende brannvern
Risiko- og sårbarhetsanalyse
Trondheim, Malvik, Kilaubu, Rennebu, Oppdal, Rissa og Leksvik
Trøndelag brann- og redningstjeneste IKS

Brannsikkerhet for risikoutsatte grupper
Statistikken viser at personer som er mest utsatt for brann er de risikoutsatte gruppene. I tiden framover vil det være naturlig å ha et fokus på personer som er spesielt risikoutsatt for brann, for å bidra til å gjøre hverdagen deres sikkere gjennom å redusere sannsynligheten for og konsekvensene ved brann. TBRT har gjennomført et prosjekt for å se på disse ”gruppene” og videre foreslå arbeidsform for å oppnå bedre brannsikkerhet. I forlengelsen av dette prosjektet er det opprettet en koordinatorstilling, der koordinatoren skal være pådriver i å bedre brannsikkerheten for disse gruppene. Gjennom prosjektet har TBRT i sin region innrettet risikoutsatte grupper i disse hovedgruppene:

- Målgruppe 1: Eldre hjemmeboende over 75 år.
- Målgruppe 2: Andre hjemmeboende med nedsatt funksjonsevne.
- Målgruppe 3: Arbeidsinnvandrere og studenter i bokollektiv.

Det må vurderes om arbeidsoppgavene til feieren skal dreies mot disse risikogruppene.

Det har vært fokusert på studenter de siste årene, spesielt gjennom informasjonskampanjer. Det må i fortsettelsen se om det finnes andre kanaler hvor man kan få bedre effekt. Det også i den senere tiden vært fokus på brannsikkerhet for arbeidsinnvandrere.

Bekymringsmeldinger
Trøndelag brann- og redningstjeneste IKS får bekymringsmeldinger om kritikkverdige boforhold i forbindelse med brannsikkerhet. Disse bekymringene tas på alvor og følges opp.

Nye forskrifter
Brann- og redningstjenesten skal innrette seg etter nye forskrifter og være pådriver mot kommunen, myndigheter og andre etater for å ivareta, bedre og videreutvikle brannsikkerheten.

Samarbeid
Det er viktig at Trøndelag brann- og redningstjeneste IKS er aktiv, samarbeider med andre og gjør seg synlig i forhold som berører brannsikkerheten, ikke bare innad i bedriften men også eksternt. Det være seg fora om risiko- og sårbarhet, øvelser sammen med andre etater, høringer, byggesaksbehandling, tunneler, samordnede tilsyn, landbruksstilsyn, møter og så videre.
I det videre arbeidet vil det, for å få brannsikkerheten i kommunene opp på akseptabelt nivå, være avgjørende at brann- og redningstjenesten, bygningseiere, kommunale enheter og andre myndigheter samarbeider. Videre vil det være viktig å få motiveret eiere og brukere til å etablere gode holdninger med hensyn på brannforebyggende arbeid.

I ROS-analysen er det også avdekket at det er behov for å vurdere avtaler med andre (politi, ambulanse, fjellredningsgrupper, Kystverket, Trondheim Havn og lignende). Der disse ikke finnes, men er nødvendig, eller eventuelt videreutvikle de som allerede finnes.

Innsats ved andre akutte ulykker
Det kan være nødvendig med drøftinger med andre offentlige etater, private bedrifter og frivillige organisasjoner for å avklare grensesnittet for brann- og redningstjenestens innsats/beredskap. I dette ligger nødvendig utstyr og kompetanse for å løse oppgavene.

Forventninger
Når det gjelder ulykker generelt i distriktet, forventer publikum at brann- og redningstjenesten kan bidra med innsats, utstyr og kompetanse. Dette er en følge av at brann- og redningstjenesten, spesielt ved trafikkulykker i distriktene, er på ulykkesstedet lenge før både politi og ambulansepersonell. Det må derfor vurderes om det er behov for utstyr og kompetanse og i tilfellet hva og hvilken.

Andre forhold som må vurderes
Kommunestyret i Oppdal kommune har i sak 11/63 (revidering av overordnet ROS-analyse for Oppdal kommune) anbefalt at det gjennomføres en gjennomgang og beskrivelse av beredskapen i kommunen, samhandling mellom beredskapsetetene politi, helse, ambulanse og brann- og redning. Egen ROS-analyse som også omhandler nærvær og dimensjonering. Det er ikke tydeliggjort hvem som skal ta initiativet i denne sammenhengen.
Vedlegg

Hovedrapport:
Vedlegg 1. Terminologi/forkortelser
Vedlegg 2. Forventninger til innsatsstyrken etter standard dimensjonering
Vedlegg 3. Statistikk
Vedlegg 4. Innsatstider

Tilleggsrapporter:
Tilleggsrapport Trondheim
Tilleggsrapport Malvik
Tilleggsrapport Klæbu
Tilleggsrapport Rissa og Leksvik
Tilleggsrapport Oppdal
Tilleggsrapport Rennebu
Vedlegg 1
Terminologi/forkortelser
Risiko- og sårbarhetsanalyse
Trondheim, Malvik, Klaebu, Rennebu, Oppdal, Rissa og Leksvik
Trøndelag brann- og redningstjeneste IKS

1890-gårder
Murgårder med trebjelkelag med mer enn to etasjer oppført i helmur og trebjelkelag, hovedsakelig oppført mellom år 1875 og år 1930.<7>

Beredskap
Den ordning som sikrer at personell er disponert for innsats på kort varsel. <1>

Beredskapsplan
Overordnet plan rettet mot beredskap overfor en type ledelse eller ulykke. Beredskapsplanen skal sikre at alle ressurser er kartlagt på forhånd, at rutiner for ulike hendelser er beskrevet, og at oppgavene er fordelt mellom ulikt personell og materiell. Beredskapsplanen skal benyttes som utgangspunkt for utarbeidelse av aktuelle aksjons- og innsatsplaner. <2>

Brann- og redningssjef
Den som forestår den daglige ledelsen av brannvesenet i henhold til brann- og eksplosjonsvernloven. <1>

Brannobjekt
Enhver bygning, konstruksjon, anlegg, opplag, tunnel, virksomhet, område m.m. hvor brann kan oppstå og true liv, helse, miljø eller materielle verdier.<3>

Brannvernregion/region
De 7 kommunene som inngår i det interkommunale selskapet Trøndelag brann- og redningstjeneste IKS hvor det samarbeides om alle brann- og redningstjenestens oppgaver. Lov og forskriftens krav til kommunen gjøres da gjeldende for regionen. <1>

Bruker
Den som i egenskap av eier, eller i henhold til avtale med eier, har total eller partiell bruksrett til et brannobjekt, og har tiltrådt bruksretten. <3>

Deltidspersonell
Personell tilsatt i brannvesenet i stilling med definert omfang mindre enn heltidsstilling, eller personell med annen tilknytning til brannvesenet med definert omfang mindre enn heltidsstilling.<1>

DSB
Direktoratet for samfunnssikkerhet og beredskap.

Eier
Den som har grunnbokshjemmel til et brannobjekt. <3>
Forebygging
Det handler om å hindre at en brann oppstår og gjøre konsekvensene minst mulig dersom det skulle oppstå brann. <4>

Fredede bygninger eller kulturmiljøer
Omfatter også administrativt fredede statlige og kirkelige eiendommer. Disse håndteres etter Kulturminneloven av fylkeskommunene eller av riksantikvaren. <2>

Heltidspersonell
Personell som har heltidsstilling i brannvesenet. <1>

Hyblifisering
Når areal i kjeller og på loft eller annet bygningsareal som endres til bolig uten å være godkjent for dette.

Innsatsplan
Plan som er utarbeidet for det aktuelle innsatsstedet. <2>

Innsatsstyrke
Den styrke som kalles ut til innsats ved brann eller ulykke. <1>

Innsatstid
Tiden fra innsatsstyrken er alarmert til den er i arbeid på skadestedet. <1>

IKS
Interkommunalt selskap.

IUA
Interkommunalt utvalg mot akutt forurensning.

Kasernert vakt
Personell i vakt på brannstasjonen. <1>

Konsekvens
Mulig følge av en uønsket hendelse. <5>

NGU
Norges geologiske undersøkelse.

NTNU
Norges teknisk-naturvitenskapelige universitet.
Områdebrann
Område der mer enn 20 hus går tapt. <2>

Overordnet vakt
Særskilt kvalifisert personell i egen vaktordning som har brannsjefmyndighet. <1>

PLIVO
Pågående og livstruende vold.

Redning
Redningsbegrepet er knyttet til redning av mennesker fra død eller skade. Redningstjenesten i Norge utøves som et samvirke mellom offentlige etater, frivillige organisasjoner og private selskaper med egne ressurser til redningsinnsats. Politiet har som oppgave og ansvar å koordinere innsatsen i konkrete ulykkestilfeller. Tjenesten er integrert og omfatter alle typer redningsaksjoner (Sjø-, land- og flyredning).

Risiko
Uttrykk for kombinasjonen av sannsynligheten for og konsekvensen av en uønsket hendelse. <5>

Risikoanalyse
Systematisk fremgangsmåte for å beskrive og/eller beregne risiko. Risioanalysen utføres ved kartlegging av uønskede hendelser og årsaker til og konsekvenser av disse. <5>

Sannsynlighet
I hvilken grad det er trolig at en hendelse vil kunne inntreffe. <5>

SP Fire research AS, tidligere SINTEF NBL
Norges branntekniske laboratorium.

SSB
Statistisk sentralbyrå.

Storulykke i henhold til Storulykkehveskriften
"en hendelse som for eksempel et større utslipp, en brann eller eksplosjon i forbindelse med at en aktivitet i en virksomhet omfattet av denne forskrift får en ukontrollert utvikling som umiddelbart eller senere medfører alvorlig fare for mennesker, miljø eller materielle verdier innenfor eller utenfor virksomheten, og der det inngår farlige kjemikalier”.

Særskilte brannobjekt
Alle typer brannobjekter som er omfattet av brann- og eksplosjonsvernlovens § 13 inndeles i følgende kategorier:

- a-objekt: bygninger og områder hvor brann kan medføre tap av mange liv. Eksempelvis sykehus, sykehjem, overnattingssteder, skoler

Sårbarhet
Sårbarhet er et uttrykk for et systems evne til å fungere og oppnå sine mål når det utsettes for en uønsket hendelse, samt de problemer systemet får med å gjenta sin virksomhet etter at hendelsen har inntruffet.

TBRT
Trøndelag brann- og redningstjeneste IKS.

Tettsted
Et tettsted er definert på denne måten i dimensjoneringsforskriftien: Tettbebygget område med minst 200 ansatte, der avstanden mellom husene normalt ikke overstiger 50 meter. Tettsted avgrenses uavhengig av administrative grenser. Statistisk sentralbyrå utgir oversikt over tettstedenes størrelse.

Tett verneverdig trehusbebyggelse
Områder som er listeført av Riksantikvaren og DSB på grunnlag av følgende kriterier:

1. Det er gjennomgående trehus i området.
2. Bebyggelsen er ansett som verneverdig.
4. Et område består normalt av minst 20 bygninger.
5. Avstanden mellom bygningene er overveiende mindre enn 8 meter. Vindforhold og topografi som kan ha betydning for brannspredning er vurdert spesielt i forbindelse med registreringen av aktuelle områder.

Uerstattelige nasjonale kulturverdier
- Alle fredede bygninger og anlegg
- Verneverdig tett trehusbebyggelse med fare for områdebrann i følge listen utarbeidet av Riksantikvaren og DSB.
Ulykke
En plutselig og tilfeldig hendelse som forårsaker større skade. Begrepet kan dekke et vidt spekter av hendelser. I vår beskrivelse har vi tatt med de hendelsene (akutte ulykker) der det kan tenkes at brann- og redningstjenesten vil kunne spille en rolle.

Verneverdige bygninger eller kulturmiljøer

Referanser:
<1>: Veiledning til forskrift om organisering og dimensjonering av brannvesen, Dimensjoneringsforskriften, utgitt av DSB i 2003
<2>: Veileder i Bybrannsikring, utgitt av DSB og Riksantikvaren i 2007
<3>: Veiledning til forskrift om brannforebyggende tiltak og tilsyn, Forebyggendeforskriften, utgitt av DSB i 2002
<4>: Veiledning til forskrift om brannforebygging, Utkast 23. januar 2015
<5>: NS 5814:2008
<6>: NOU 2000:24
<7>: Forskrift om adgang til å føre tilsyn med bygninger og eiendommer i områder med tett trehusbebyggelse, murgårder med trebjelkelag, samt omsorgsboliger, Trondheim kommune, Sør-Trøndelag
Vedlegg 2

Forventninger til innsatsstyrken etter standard dimensjonering
Forventninger til innsatsstyrken etter standard dimensjonering

Branner og ulykker kan for enkelhets skyld deles inn i tre kategorier i henhold til dimensjoneringsforskriften:

- "liten"
- "større"
- "de største"

Det er forventet at brannvesen som dimensjoneres etter standardkravene, skal kunne håndtere "liten" og "større" brann/ulykke. Etter standardkravene skal enhver kommune ha et brannvesen med minst 16 personer, jf. § 5-1, men med ulike krav til vaktberedskap, avhengig av tettstedets innbyggertall, jf. §§ 5-3 og 5-4.

"Liten" brann eller ulykke

Minst 4 mannskaper av en minste innsatsstyrke på 16 mannskaper pluss eventuell støttestyrke skal utgjøre en førsteinnsatsstyrke. Denne forventes å være i stand til å iverksette effektiv og sikker redning/slokking/begrensning i en "liten" brann eller ulykke, se under §§ 5-1, 5-2 og 5-3.

"Liten" brann eller ulykke kan være:

- brann innenfor en frittliggende bygning eller forskriftsmessig "liten" branncelle på størrelse med en bolig/leilighet (ca. 100 - 150 m²)
- brann i frittliggende fritidsbolig (ca. 100 - 150 m²)
- bilbrann
- trafikkruhell med 1-2 biler involvert
- forberedende innsats ved skogbrann, vannskader, ras, flom, osv.
- pipebrann
- akutt forurensning (avhengig av interkommunal avtale og beredskapsplan)
- mindre branner som f.eks. containerbrann og gressbrann

"Større" brann eller ulykke

Etter 10-15 minutter fra førsteinnsats er iverksatt, er det forventet at samlet minst 12-14 mannskaper av en minnestyrke på 16 mannskaper er i innsats. Denne innsatsstyrken skal kunne håndtere en "større" brann eller ulykke på en effektiv og sikker måte. Se under § 4-1, § 4-3 og § 5-1.

"Større" brann eller ulykke kan være:

- brann med spredning utover "liten" branncelle
- brann innenfor forskriftsmessig brannseksjon (salgslokaler og industri/håndverkslokaler på inntil 1800 m² uten kompenserende tekniske tiltak)
- totalbrann i bygning med forskriftsmessig avgrenset størrelse som bolighus i tettbebyggelse, rekkehus, overnattingssted
- trafikkulykker med mer enn 2 biler involvert
- akutt forurensning (avhengig av beredskapsplan/avtale)
mindre skogbrann (2-10 mål)

"De største" branner og ulykker

Branner og ulykker i objekter som er bygget, utstyrt og vedlikeholdt i henhold til bygningsloven med forskrifter og brann- og eksplosjonsvernloven med forskrifter, kan likevel utvikle seg til å bli større enn hva standardkravene er ment å dekke. Dette skal det tas hensyn til ved å:

- tilrettelegge for bistand i akutsituasjon, se under § 4-2
- rekvirere/anmode andre personell- og materiellressurser med hjemmel i brann- og eksplosjonsvernloven §§ 5 og 15, se også under § 4-2

Forutsetninger for innsatsen:

Når et førsteinnsatslag med minst 4 mannskaper med støttepersonell skal kunne håndtere en "liten" brann eller ulykke, og en samlet styrke med minst 12-14 mannskaper en "større" brann eller ulykke, forutsettes det at innsatsen kan skje:

- i objekt som er brannteknisk oppdelt i forskriftsmessige arealer, jf. byggeforskrifter
- med tilstrekkelig slokkevann, innenfor fastsatt innsatstid med kvalifisert personell
- med tilstrekkelig og tilfredsstillende utstyr effektivt og direkte fra brannobjektets utside (intill 1-2 etasjer eller når bygningen er tilrettelagt for utvendig redning og slokking)
- med 4-mannslaget hvor røykdykkerinnsats utøves i henhold til røyk- og kjemikaliedykkerveiledningen
- med samlet styrke på minst 12-14 mannskaper hvor røykdykker innsats utøves i henhold til røyk- og kjemikaliedykkerveiledningen.

Standardberedskapen skal kunne dekke brannvesenetets bistandsoppgaver etter brann- og eksplosjonsvernloven § 15 i begrenset omfang.

Når en hendelse får et større omfang enn "større" brann eller ulykke, overstiger dette forventningene til effekten av standardberedskapen.
Vedlegg 3
Statistikk
Årsaksfordeling ved bygningsbranner 2009-2011 på landsbasis

<table>
<thead>
<tr>
<th>Årsak</th>
<th>Prosentandel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Påsatte branner</td>
<td>8,5</td>
</tr>
<tr>
<td>Åpen ild</td>
<td>21,4</td>
</tr>
<tr>
<td>Elektrisk årsak</td>
<td>22,5</td>
</tr>
<tr>
<td>Feil bruk av elektrisk utstyr</td>
<td>16,4</td>
</tr>
<tr>
<td>Eksplosjon</td>
<td>0,2</td>
</tr>
<tr>
<td>Selvtenning</td>
<td>2,9</td>
</tr>
<tr>
<td>Naturlige fenomener (Lynnedslag)</td>
<td>1,1</td>
</tr>
<tr>
<td>Annen årsak</td>
<td>4,9</td>
</tr>
<tr>
<td>Ukjent</td>
<td>21,6</td>
</tr>
</tbody>
</table>
Brannårsaker og omkomne på landsbasis (hovedsakelig hentet fra DSB)
Årsakssfordelingen på bygningsbranner varierer svært lite fra år til år. Elektrisitet forårsaker de fleste bygningsbrannene. I 2011 skyldtes nesten 50 % av brannene elektrisitet, enten i form av teknisk svikt eller feil bruk av elektrisk utstyr.

Årsaksinndeling

Brannårsaker
Åpen ild og elektrisitet er de største hovedårsakene til branner. Elektrisitet (teknisk og feil bruk) står for 40-45 % av de etterforskede brannene. De største underkategoriene er feil bruk i form av tørrkoking og teknisk feil i form av serielysbue. Åpen ild utgjør rundt en fjerdedel av bygningsbrannene. Kategorien åpen ild omfatter flere forhold, blant annet røyking, levende lys, piper og ildsteder.

Bygningsbranner viser en økende tendens i vintermånedene, noe som kan skyldes større bruk av elektrisk utstyr og økende fyringsbehov/bruk av åpen ild.

Ukjent brannårsak
I enkelte tilfeller får ikke DSB informasjon om brannårsaken. At brannårsaken er ukjent for en del branner gjør at oversikten over brannårsakene er behæftet med noe usikkerhet.

Hvorfor ukjent brannårsak
Grunnen til at DSB mangler brannårsak for enkelte branner kan være er mangelfull rapportering, umulig å finne brannårsaken eller at brannen ikke er etterforsket.

Omkomne i brann
DSB registrerer personer som omkommet i brann dersom dødsårsaken er kullosforgiftning eller brannskader innen tre måneder etter branndato.

På landsbasis omkommer 60-70 personer hvert år i branner, og det er flest menn som omkommer. De fleste omkommer i sitt eget hjem. Åpen ild står for omtrent 40 %. Røyking og levende lys er her de største underkategoriene. Statistikken viser også at blant dødsårsaken røyking er det flest eldre. Tørrkoking er en annen stor årsak (feil bruk). Her er det flest 20-69 åringen som er involvert, hovedsakelig menn.
Statistikken på landsbasis viser at antallet eldre hjemmeboende personer som omkommer i brann, er økende. Det vil si at risikoen for å omkomme i brann øker med stigende alder. Selv om personer over 70 år kun utgjør om lag 11 % av befolkningen, er over en tredjedel av dem som omkommer i brann i denne aldersgruppen. Dødshyppighet i boligbranner hos personer på 70 år og mer er omtrent 4,5 ganger høyere enn hos den øvrige del av befolkningen. Det er forventet at antallet personer over 70 år vil fordobles frem mot 2060. Å forebygge at flere eldre omkommer i brann som følge av denne utviklingen, vil være en viktig utfordring i årene fremover.

På landsbasis omkom det henholdsvis 61, 65, 46, 40 og 61 personer i brann i tidsrommet 2009-2013. Det var hvert år flere menn enn kvinner som omkom i brann.

Annet

- Det vises ellers til rapport utarbeidet av SINTEF NBL Brannskadeutviklingen i Norge – Tiltak for å redusere brannskadene ved Bodil Aamnes Mostue 2008 (A08111) og rapporten Kjennetegn og utviklingstrekker ved dødsbranner og omkomne i brann, utarbeidet av DSB.
Utrykningsstatistikk 2011

<table>
<thead>
<tr>
<th>Hendelsestyper/Kommune</th>
<th>Trondheim (1601)</th>
<th>Klæbu (1662)</th>
<th>Malvik (1663)</th>
<th>Rissa (1624)</th>
<th>Leksvik (1718)</th>
<th>Totalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Akutt forurensning</td>
<td>49</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>51</td>
</tr>
<tr>
<td>Annet (annen små brann)</td>
<td>98</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>116</td>
</tr>
<tr>
<td>Assistanse til andre nødetater</td>
<td>20</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>22</td>
</tr>
<tr>
<td>Brann i bygning</td>
<td>152</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>168</td>
</tr>
<tr>
<td>Brann i bygning med omkomne</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Brann i kjøretøy</td>
<td>45</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td>Brannhindrende tiltak</td>
<td>170</td>
<td>1</td>
<td>7</td>
<td>1</td>
<td>1</td>
<td>180</td>
</tr>
<tr>
<td>Diverse annet</td>
<td>299</td>
<td>1</td>
<td>9</td>
<td>6</td>
<td>2</td>
<td>317</td>
</tr>
<tr>
<td>Dykking</td>
<td>24</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>24</td>
</tr>
<tr>
<td>Falsk alarm</td>
<td>132</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>136</td>
</tr>
<tr>
<td>Gassalarm</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>Gressbrann</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>Heisalarm</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>17</td>
</tr>
<tr>
<td>Medisinsk bistand</td>
<td>21</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>23</td>
</tr>
<tr>
<td>Nøkkelboksalarm</td>
<td>12</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>Pipebrann</td>
<td>29</td>
<td>3</td>
<td>7</td>
<td>11</td>
<td>1</td>
<td>51</td>
</tr>
<tr>
<td>RVR</td>
<td>36</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>36</td>
</tr>
<tr>
<td>Sjøredning</td>
<td>37</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>38</td>
</tr>
<tr>
<td>Skogbrann</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Sprinkleralarm</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>Trafikkulykke</td>
<td>152</td>
<td>4</td>
<td>13</td>
<td>10</td>
<td>4</td>
<td>183</td>
</tr>
<tr>
<td>Unødig alarm</td>
<td>1496</td>
<td>9</td>
<td>48</td>
<td>30</td>
<td>10</td>
<td>1593</td>
</tr>
<tr>
<td>Urban redning</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Vannskade/oversvømmelse</td>
<td>65</td>
<td>1</td>
<td>3</td>
<td>6</td>
<td>0</td>
<td>75</td>
</tr>
<tr>
<td>Vekterselskaper private (unødig alarm)</td>
<td>129</td>
<td>6</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>142</td>
</tr>
<tr>
<td>Totalt pr. kommune</td>
<td>3011</td>
<td>36</td>
<td>115</td>
<td>80</td>
<td>25</td>
<td>3267</td>
</tr>
</tbody>
</table>
Utrykningsstatistikk 2012

<table>
<thead>
<tr>
<th>Hendelsetyper/Kommune</th>
<th>Trondheim</th>
<th>Klæbu</th>
<th>Malvik</th>
<th>Rissa</th>
<th>Leksvik</th>
<th>Rennebu</th>
<th>Oppdal</th>
<th>Totalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Akutt forurensning</td>
<td>44</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>46</td>
</tr>
<tr>
<td>Annet (annen små brann)</td>
<td>58</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>62</td>
</tr>
<tr>
<td>Assistanse til andre nødetater</td>
<td>64</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>76</td>
</tr>
<tr>
<td>Brann i bygning</td>
<td>120</td>
<td>2</td>
<td>7</td>
<td>13</td>
<td>1</td>
<td>1</td>
<td>7</td>
<td>151</td>
</tr>
<tr>
<td>Brann i bygning med omkomne</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Brann i kjøretøy</td>
<td>35</td>
<td>0</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>49</td>
</tr>
<tr>
<td>Brannhindrende tiltak</td>
<td>185</td>
<td>1</td>
<td>6</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>200</td>
</tr>
<tr>
<td>Diverse annet</td>
<td>225</td>
<td>1</td>
<td>15</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>251</td>
</tr>
<tr>
<td>Dykking</td>
<td>52</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>52</td>
</tr>
<tr>
<td>Falsk alarm</td>
<td>126</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>132</td>
</tr>
<tr>
<td>Gassalarm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gressbrann</td>
<td>8</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>13</td>
</tr>
<tr>
<td>Heisalarm</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Klimaskapt hendelse</td>
<td>10</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>Medisinsk bistand</td>
<td>11</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>15</td>
</tr>
<tr>
<td>Nøkkelboksalartern</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>Pipebrann</td>
<td>26</td>
<td>1</td>
<td>8</td>
<td>5</td>
<td>3</td>
<td>0</td>
<td>4</td>
<td>47</td>
</tr>
<tr>
<td>Redningsoppdrag</td>
<td>34</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>37</td>
</tr>
<tr>
<td>RVR</td>
<td>73</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>77</td>
</tr>
<tr>
<td>Sjøredning</td>
<td>42</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>42</td>
</tr>
<tr>
<td>Skogbrann</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Sprinkleralartern</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trafikkulykke</td>
<td>162</td>
<td>2</td>
<td>15</td>
<td>13</td>
<td>4</td>
<td>7</td>
<td>14</td>
<td>217</td>
</tr>
<tr>
<td>Unødig alarm</td>
<td>1688</td>
<td>8</td>
<td>51</td>
<td>34</td>
<td>17</td>
<td>1</td>
<td>46</td>
<td>1845</td>
</tr>
<tr>
<td>Urban redning</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Vannskade/oversvømmelse</td>
<td>27</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>28</td>
</tr>
<tr>
<td>Vekterselskaper private (unødig alarm)</td>
<td>130</td>
<td>2</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>137</td>
</tr>
<tr>
<td>Totalt pr. kommune</td>
<td>3133</td>
<td>24</td>
<td>121</td>
<td>84</td>
<td>36</td>
<td>15</td>
<td>89</td>
<td>3502</td>
</tr>
<tr>
<td>Hendelsestyper/Kommuner</td>
<td>Trondheim</td>
<td>Klæbu</td>
<td>Malvik</td>
<td>Rissa</td>
<td>Leksvik</td>
<td>Rennebu</td>
<td>Oppdal</td>
<td>Totalt</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-----------</td>
<td>-------</td>
<td>--------</td>
<td>-------</td>
<td>---------</td>
<td>---------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>Akutt forurensning</td>
<td>27</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>27</td>
</tr>
<tr>
<td>Annet (annen brann)</td>
<td>42</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>52</td>
</tr>
<tr>
<td>Assistanse til andre nødetater</td>
<td>94</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>104</td>
</tr>
<tr>
<td>Brann i bygning</td>
<td>101</td>
<td>0</td>
<td>8</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>9</td>
<td>128</td>
</tr>
<tr>
<td>Brann i bygning med omkomne</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Brann i kjøretøy</td>
<td>41</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>56</td>
</tr>
<tr>
<td>Brannhindrende tiltak</td>
<td>140</td>
<td>0</td>
<td>7</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>153</td>
</tr>
<tr>
<td>Diverse annet</td>
<td>230</td>
<td>0</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>8</td>
<td>250</td>
</tr>
<tr>
<td>Dykkeroppdrag</td>
<td>37</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>37</td>
</tr>
<tr>
<td>Falsk alarm</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>103</td>
</tr>
<tr>
<td>Gressbrann</td>
<td>23</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>31</td>
</tr>
<tr>
<td>Heisalarm</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Klimaskapt hendelse</td>
<td>20</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>Medisinsk bistand</td>
<td>14</td>
<td>0</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>21</td>
</tr>
<tr>
<td>Nøkkelboksalarm</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>Pipebrann</td>
<td>26</td>
<td>0</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>0</td>
<td>3</td>
<td>44</td>
</tr>
<tr>
<td>Redningsoppdrag</td>
<td>25</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>31</td>
</tr>
<tr>
<td>RVR</td>
<td>59</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>62</td>
</tr>
<tr>
<td>Sjøredning</td>
<td>35</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>38</td>
</tr>
<tr>
<td>Skogbrann</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Trafikkulykke</td>
<td>159</td>
<td>4</td>
<td>16</td>
<td>14</td>
<td>3</td>
<td>8</td>
<td>8</td>
<td>212</td>
</tr>
<tr>
<td>Unødig alarm</td>
<td>1686</td>
<td>6</td>
<td>45</td>
<td>21</td>
<td>9</td>
<td>1</td>
<td>34</td>
<td>1802</td>
</tr>
<tr>
<td>Urban redning</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Vannskade/oversvømmelse</td>
<td>54</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>60</td>
</tr>
<tr>
<td>Vekterselsk. Priv. (unødig alarm)</td>
<td>166</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>179</td>
</tr>
<tr>
<td>Total pr kommune</td>
<td>3100</td>
<td>12</td>
<td>118</td>
<td>68</td>
<td>30</td>
<td>26</td>
<td>84</td>
<td>3522</td>
</tr>
</tbody>
</table>
Utrykningsstatistikk 2014

<table>
<thead>
<tr>
<th>Hendelsestyper/Kommuner</th>
<th>Trondheim</th>
<th>Klæbu</th>
<th>Malvik</th>
<th>Rissa</th>
<th>Leksvik</th>
<th>Rennebu</th>
<th>Oppdal</th>
<th>Totalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Akutt forurensning</td>
<td>28</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>Annet (annen brann)</td>
<td>58</td>
<td>1</td>
<td>5</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>71</td>
</tr>
<tr>
<td>Assistanse til andre nødetater</td>
<td>106</td>
<td>1</td>
<td>7</td>
<td>13</td>
<td>5</td>
<td>1</td>
<td>3</td>
<td>136</td>
</tr>
<tr>
<td>Brann i bygning</td>
<td>124</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>2</td>
<td>1</td>
<td>5</td>
<td>146</td>
</tr>
<tr>
<td>Brann i bygning med omkomne</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Brann i kjøretøy</td>
<td>36</td>
<td>0</td>
<td>3</td>
<td>7</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>53</td>
</tr>
<tr>
<td>Brannhindrende tiltak</td>
<td>137</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>146</td>
</tr>
<tr>
<td>Diverse annet</td>
<td>220</td>
<td>2</td>
<td>9</td>
<td>7</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>249</td>
</tr>
<tr>
<td>Dykkeroppdrag</td>
<td>25</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>Falsk alarm</td>
<td>95</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>Gressbrann</td>
<td>43</td>
<td>0</td>
<td>3</td>
<td>4</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>56</td>
</tr>
<tr>
<td>Heisalarm</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Klimaskapt hendelse</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Medisinsk bistand</td>
<td>9</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>18</td>
</tr>
<tr>
<td>Nøkkelsalarm</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>Pipebrann</td>
<td>29</td>
<td>0</td>
<td>7</td>
<td>5</td>
<td>11</td>
<td>2</td>
<td>6</td>
<td>60</td>
</tr>
<tr>
<td>Redningsoppdrag</td>
<td>19</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>22</td>
</tr>
<tr>
<td>RVR</td>
<td>31</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>32</td>
</tr>
<tr>
<td>Sjøredning</td>
<td>32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>32</td>
</tr>
<tr>
<td>Skogbrann</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>Trafikkulykke</td>
<td>104</td>
<td>0</td>
<td>8</td>
<td>17</td>
<td>1</td>
<td>12</td>
<td>15</td>
<td>157</td>
</tr>
<tr>
<td>Unødig alarm</td>
<td>1702</td>
<td>8</td>
<td>32</td>
<td>25</td>
<td>7</td>
<td>7</td>
<td>37</td>
<td>1818</td>
</tr>
<tr>
<td>Urban redning</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Vannskade/oversvømmelse</td>
<td>25</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>29</td>
</tr>
<tr>
<td>Vekterselsk. Priv. (unødig alarm)</td>
<td>194</td>
<td>2</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>201</td>
</tr>
<tr>
<td>Total pr. kommune</td>
<td>3030</td>
<td>19</td>
<td>96</td>
<td>97</td>
<td>35</td>
<td>38</td>
<td>88</td>
<td>3403</td>
</tr>
</tbody>
</table>
Befolkningsframskrivninger i de ulike kommunene i tidsrommet
2020-2030 (hentet fra SSB)

Trondheim

Klæbu

Malvik
Risiko- og sårbarhetsanalyse
Trondheim, Malvik, Klaebu, Rennebu, Oppdal, Rissa og Leksvik
Trøndelag brann- og redningstjeneste IKS

Rissa

Leksvik

Rennebu
Risiko- og sårbarhetsanalyse
Trondheim, Malvik, Klæbu, Rennebu, Oppdal, Rissa og Leksvik
Trøndelag brann- og redningstjeneste IKS

Oppdal
Skadeutbetalinger etter branner på landsbasis

Såkalte "kalde branner", dvs. elektriske fenomenskader, er ikke med i utvalget.

Kilde: Norsk brannvernforening
Vedlegg 4
Innsatstider
Innsatstider Rissa og Leksvik

Innsatstid = Oppmøtetid + forspenningstid + kjøretid + rigging og klargjøring for innsats

- 0-10 min
- 10-20 min
- 20-30 min

Brannstasjoner:
- Rissa
- Stjørna
- Statsbygd
- Vanvikan
- Leksvik
Innsatstider
Trondheim, Klæbu og Malvik

Innsatstid = oppmøtetid + forspennings tid + kjøretid + rigging og klaargjøring for innsats